Sign In
Sign In

How to Install Caddy Web Server on Ubuntu 22.04

How to Install Caddy Web Server on Ubuntu 22.04
Umair Khurshid
Technical writer
Ubuntu
07.02.2025
Reading time: 7 min

Caddy is a cross-platform web server built in the Go and uses HTTPS by default. It stands out for its ease of use and simple configuration. It is known for being easy to configure, especially for users who do not have much experience with web server administration. 

Unlike other web servers, Caddy is designed to work with HTTPS out of the box and has integration with Let's Encrypt, allowing you to automatically receive and renew certificates.

And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS.

Below, we will explain how to install Caddy on Ubuntu 22.04 and how to configure it.

Why Use Caddy?

Why do you need Caddy and what does it offer compared to Apache or Nginx? As we said above: simplicity and security. You do not need to configure encryption parameters and protocol usage, Caddy will do everything out of the box, and in the best possible way, using the most modern technologies. It has the latest features such as HTTP/2, IPv6, Markdown, WebSockets, CreateCGI, templates, and other standard features.

The configuration itself is extremely simple, you need to set a minimum of options to get a working server, but at the same time you can manage it quite flexibly, redefining the necessary parameters. The only downside is compatibility with old systems, as Caddy automatically disables outdated protocols and ciphers.

Installing the Caddy Web Server via Cloudsmith 

There are four different methods to install Caddy. We can do it by simply downloading the executable binary, by compiling the source code, using docker image, or installing it from the repository. In this article, we will do the latter.

Before we start installing the Caddy web server, it is recommended that we first update the Ubuntu host system and at the same time update the package sources. We always want to benefit from the most recent releases and prefer to avoid outdated software packages.

Perform updates and upgrades:

sudo apt update && sudo apt upgrade -y

Installing Caddy requires appropriate sudo permissions on the host system. To install Caddy on Linux Ubuntu 22.04, we first start by setting up the necessary dependencies:

apt install gnupg curl apt-transport-https debian-keyring debian-archive-keyring -y

Once the installation of all dependencies for the web server has been successfully completed, we need to add the GPG key using the following command:

curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/gpg.key' | gpg --dearmor -o /usr/share/keyrings/caddy-stable-archive-keyring.gpg

Next we have to add the Caddy repository to the APT sources list, allowing Caddy to be installed from this repository:

curl -1sLf 'https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt' | sudo tee /etc/apt/sources.list.d/caddy-stable.list

Update the package sources:

sudo apt update -y

Finally, the Caddy can be installed via the command line. At this point, all prerequisites, and preparations for the installation have been successfully completed. Run the command below to install.

sudo apt install caddy -y

Now that the web server has been installed on the Linux host system, the service just needs to be activated. We do this with the following command.

sudo systemctl enable --now caddy

The version you just installed can be validated with the following command:

caddy version

Is a version number displayed? Then Caddy has been successfully installed on the system.

Caddy Configuration

The internal format of the caddy configuration is stored in JSON format and can be managed online via REST API, a more classic format of setting via a configuration file is also available, for this purpose the configuration file /etc/caddy/Caddyfile is used. 

It already contains an example of the configuration, and we only need to correct it. Please note that the indents in the file are formed strictly using tabulation and two, four, six, etc. indents should be used, otherwise you will receive a warning about incorrect formatting of the configuration file.

Set up a Static Site

If we want to set a website with Caddy over the local network or over the Internet, we have to save the files and subdirectories associated with the website in the www directory.

To do this, we first create a new directory for the output of a web page:

sudo mkdir -p /var/www/html
cd /var/www/html

Create a website index with the editor:

sudo nano index.html

Copy the following content and paste this example page into the index.html:

<!DOCTYPE html> 
<html> 
<head> 
  <meta charset="UTF-8"> 
  <title>Hello, I'm Caddy, your reliable web server!</title> 
</head> 
<body> 
<p>Great projects can be created here! All that is needed is HTML and CSS knowledge, rounded off with a little JavaScript.</p> 
</body> 
</html>

Now we need to edit the Caddy configuration file so that the web page can be displayed. To do this, execute the following commands from your system.

sudo nano /etc/caddy/Caddyfile 

Edit:

:80 { 
# Path of the website 
root * /var/www/html/

The website should now be accessible via the IP address from the local network.

Image1

If you want to make the website accessible via the Internet, the web ports (80/443) must be released for the server IP address within the NAT settings in the router/firewall.

Set up a Domain

To set up a domain, you first need to specify the domain's A/AAAA DNS records on this server in the DNS control panel. Then create a document root directory for the website in the /var/www/html folder:

mkdir /var/www/html/example.com

Replace example.com with your domain.

When using SELinux, we will change the file security context for web content:

# chcon -t httpd_sys_content_t /var/www/html/example.com -R
# chcon -t httpd_sys_rw_content_t /var/www/html/example.com -R

To configure a domain in this configuration, we will only have to replace <name> :80 with our domain. Also, if we want to change the path of our website, we will have to modify the parameter root.

example.com {
        root * /var/www/html/example
        file_server
}

To reload the configuration, we have to restart the service:

systemctl reload caddy

Also, if we want, we can configure the logs for access:

example.com {
        root * /var/www/html/example
        file_server
        log {
        output file /var/log/caddy/access.log
        format console
        }
}

Configure a Dynamic Site 

To work with dynamic content, we will need support for PHP, the scripting language in which most CMS are written. Caddy does not have its own process manager, so we will use PHP-FPM for this purpose:

sudo apt install php-fpm

Then we go to /etc/php/8.3/fpm/php.ini and adjust some parameters. First, we find, uncomment and change the option to the following:

cgi.fix_pathinfo=0

Then we set the maximum size of the request being sent:

post_max_size = 32M

And the maximum size of the uploaded file, it must be less than or equal to the size of the request sent:

upload_max_filesize = 30M

Save the changes and restart the fpm service:

sudo systemctl restart php8.3-fpm

Now, after adding the fpm directive, configuration will look like this:

example.com {
	root * /var/www/html/example
	file_server
	encode zstd gzip
	php_fastcgi unix//run/php/php8.3-fpm.sock # Uses PHP-FPM to serve PHP files (through a Unix socket)  
	
	log {
        output file /var/log/caddy/access.log
        format console
	}
}

Set up Caddy as Reverse Proxy

To set up a reverse proxy, add a new site block with the following structure:

example.com {
    encode zstd gzip
    handle_path /static/* {
        root * /var/www/html/example
        file_server
    }
    reverse_proxy localhost:3000
    log {
        output file /var/log/caddy/access.log
        format console
    }
}

This Caddyfile sets up a reverse proxy where requests to hostman.com are forwarded to localhost:3000, except for requests starting with /static/, which are served directly from /var/www/html/example. The reverse_proxy directive ensures all non-static requests are proxied to the backend server at localhost:3000.

Wrapping Up

If you are a beginner and want to set up a web server without the hassle of long configuration, Caddy is perfect for you. Even if you are an experienced user who needs an instant and simple web server, then you should pay attention to Caddy. 

If you require a more sophisticated server with advanced features, then with minimal configurations you can set folder permissions, manage authentication, error pages, archiving, HTTP request redirection, and other settings.

Ubuntu
07.02.2025
Reading time: 7 min

Similar

Ubuntu

Installing and Configuring cloud-init on Ubuntu

cloud-init is the de facto industry standard for automated initialization of virtual machines in cloud environments. This powerful configuration tool is activated at the first boot of an instance and allows execution of a predefined set of tasks without manual intervention. Its key functions include: Automating basic system setup, including assigning a hostname. User account management: creating users, assigning permissions, and configuring authentication mechanisms. Automatic deployment of SSH keys for secure access. Configuration of network interfaces according to specified parameters. Operations with disk storage, such as mounting and formatting volumes. Execution of custom scripts for post-installation configuration, which may include installing software, deploying application code, and applying fine-tuned settings. Although cloud-init is primarily designed for public clouds (AWS, Google Cloud, Azure, Hostman), it can also be used on local virtual machines and even on physical servers to standardize their initial setup. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. In this article, we will look at how to install, configure, and use cloud-init on Ubuntu. Installation In most Ubuntu images, cloud-init is already preinstalled. Canonical (the developer of Ubuntu) also releases images called Ubuntu Cloud Images, specially prepared and optimized for running in cloud environments. In Hostman, all Ubuntu images already include cloud-init. You can additionally check for cloud-init with the command: cloud-init --version If the command outputs a version (as shown in the screenshot above), then cloud-init is already installed in the system. If the response is Command cloud-init not found, install the utility with: apt update && apt -y install cloud-init After installation, cloud-init will automatically run at every system boot. Note that cloud-init runs before the server connects to the network. Configuration File Structure All cloud-init configuration files are located in /etc/cloud/: /etc/cloud/clean.d/ — directory for cleanup scripts. These scripts are executed when the command cloud-init clean is run. /etc/cloud/cloud.cfg — the main configuration file. This sets the default settings for all initialization stages. /etc/cloud/cloud.cfg.d/ — directory for user configuration files with the .cfg extension. Files are processed in alphabetical order and override settings from the main file. This is the preferred location for custom configurations. /etc/cloud/templates/ — contains templates used by cloud-init to generate system files. /var/lib/cloud/ — stores cache, data, and scripts generated during cloud-init execution. Modules Modules in cloud-init are separate executable components that perform specific configuration tasks when a VM first boots. Each module is responsible for its own area: network configuration, user creation, package installation, etc. An important feature of modules is their execution order: they do not run randomly, but in a strict sequence consisting of stages: Init Stage (Initialization stage): Runs immediately after mounting the root filesystem. Modules needed to prepare the system for main configuration are executed here (e.g., mounting additional disks). Config Stage (Configuration stage): The main stage where most modules run: network setup, package installation, SSH key setup, user creation. Final Stage: Executes modules for tasks that should occur at the very end, such as sending system readiness notifications or running user scripts. Local Usage of cloud-init Let’s test cloud-init locally, i.e., run it after the server has already booted. We will create two scenarios: The first scenario will create a new user named new-admin, assign a password, and grant administrator rights. The second scenario will install the packages atop, tree, net-tools. Since we will use a password for the new user, we need to generate its hash, as all passwords (and other secrets) are specified in plain text by default. . To get a hash, install the whois package, which contains the mkpasswd utility: apt -y install whois Run the utility with the SHA-512 hashing algorithm: mkpasswd -m sha-512 --stdin Enter the password for the user and press Enter. The utility will generate a password hash. Copy this hash for later use. As noted earlier, user configuration files are stored in /etc/cloud/cloud.cfg.d. Create a new file 99-new-admin-config.cfg:nano /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg Use the following content: #cloud-config users: - name: new-admin passwd: $6$BSAzGG4SFvsn//vD$ds8oM53OIs6qXiCIhMTl10bwQfe9u5WxGKADzwyPsODniGhYAXCUOAoyUkJLs.H9z0PxqLr7BxEJ18hT2VEyR/ sudo: ALL=(ALL) ALL shell: /bin/bash groups: sudo Check syntax for errors: cloud-init schema --config-file /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg If there are no errors, the command will return Valid schema. Before running the script, clear the previous configuration: cloud-init clean Run the configuration:cloud-init single --name users-groups --file /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg After the new configuration is applied, check for the new-admin user: id new-admin Next, install the packages. Create a new file: nano /etc/cloud/cloud.cfg.d/99-install-packages.cfg Use the following content: #cloud-config package_update: true package_upgrade: true packages: - atop - tree - net-tools Check syntax: cloud-init schema --config-file /etc/cloud/cloud.cfg.d/99-install-packages.cfg Clear configuration:  cloud-init clean Run the script to install the packages: cloud-init single --name package_update_upgrade_install --file /etc/cloud/cloud.cfg.d/99-install-packages.cfg Verify the installed packages: dpkg -l | grep -E "atop|tree|net-tools" Using cloud-init in Hostman Hostman cloud servers running Linux support cloud-init via the control panel. Scenarios can be configured both during server ordering and later during usage. Let’s look at the practical use of cloud-init. We will create a scenario that will: Create a new user named new-usr; Configure SSH key authentication for new-usr; Install two packages: mc, ncdu; Change the hostname to hostman-server; Create a file test-file.txt in the /tmp directory. If cloud-init scripts have already been run on the server, run cloud-init clean before applying the configuration below. Our script will run when creating a virtual server; we can add it at step 7: Since SSH key authentication will be used for the new user, generate keys in advance. On another device (Windows, macOS, Linux), run the command: ssh-keygen Save the keys in the default directory (.ssh in the home directory). Then obtain the public key value (.pub file): cat ~/.ssh/id_ed25519.pub Replace id_ed25519.pub with your own filename if different. In the control panel, in the cloud-init block, enter the following syntax: #cloud-config packages: - mc - ncdu users: - name: "new-usr" groups: sudo shell: /bin/bash sudo: ['ALL=(ALL) NOPASSWD:ALL'] ssh_authorized_keys: - ssh-rsa AAAAC3NzaC1lZDI1NTE5AAAAIFoUTI5BKDBDgKLIMpM71m/YI7dTtFKQiSIivRk9pUbs alex@DESKTOP-VTUJHJ9 lock_passwd: true hostname: hostman-server preserve_hostname: false runcmd: - [touch, /tmp/test-file.txt] In the ssh_authorized_keys field, enter your own public key. Complete the server order by clicking “Order.” Once the server is created, connect via SSH with the new user and verify that all specified actions were completed. Verify the user: id new-usr Verify installed packages: dpkg -l | grep -E "mc|ncdu" Verify hostname: hostname Verify file existence: ls -lah /tmp/test-file.txt Conclusion cloud-init is a powerful tool for automating the initial setup of servers in Ubuntu. With its capabilities, you can deploy fully configured servers in seconds, minimize human error, and easily scale infrastructure. The main strength of cloud-init lies in its ability to transform a virtual machine template into a fully configured, production-ready server instance without manual intervention. Automating network configuration, security updates, user creation, and software deployment are the advantages that make it indispensable for DevOps engineers and system administrators.
04 September 2025 · 7 min to read
Java

Switching between Java Versions on Ubuntu

Managing multiple Java versions on Ubuntu is essential for developers working on diverse projects. Different applications often require different versions of the Java Development Kit (JDK) or Java Runtime Environment (JRE), making it crucial to switch between these versions efficiently. Ubuntu provides powerful tools to handle this, and one of the most effective methods is using the update-java-alternatives command. Switching Between Java Versions In this article, the process of switching between Java versions using updata-java-alternatives will be shown. This specialized tool simplifies the management of Java environments by updating all associated commands (such as java, javac, javaws, etc.) in one go.  And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. Overview of Java version management A crucial component of development is Java version control, especially when working on many projects with different Java Runtime Environment (JRE) or Java Development Kit (JDK) needs. In order to prevent compatibility problems and ensure efficient development workflows, proper management ensures that the right Java version is utilized for every project. Importance of using specific Java versions You must check that the Java version to be used is compatible with the application, program, or software running on the system. Using the appropriate Java version ensures that the product runs smoothly and without any compatibility issues. Newer versions of Java usually come with updates and security fixes, which helps protect the system from vulnerabilities. Using an out-of-date Java version may expose the system to security vulnerabilities. Performance enhancements and optimizations are introduced with every Java version. For maximum performance, use a Java version that is specific to the application. Checking the current Java version It is important to know which versions are installed on the system before switching to other Java versions.  To check the current Java version, the java-common package has to be installed. This package contains common tools for the Java runtimes including the update-java-alternatives method. This method allows you to list the installed Java versions and facilitates switching between them. Use the following command to install the java-common package: sudo apt-get install java-common Upon completing the installation, verify all installed Java versions on the system using the command provided below: sudo update-java-alternatives --list The report above shows that Java versions 8 and 11 are installed on the system. Use the command below to determine which version is being used at the moment. java -version The displayed output indicates that the currently active version is Java version 11. Installing multiple Java versions Technically speaking, as long as there is sufficient disk space and the package repositories support it, the administrator of Ubuntu is free to install as many Java versions as they choose. Follow the instructions below for installing multiple Java versions. Begin by updating the system using the following command:   sudo apt-get update -y && sudo apt-get upgrade -y To add another version of Java, run the command below. sudo apt-get install <java version package name> In this example, installing Java version 17 can be done by running:  sudo apt-get install openjdk-17-jdk openjdk-17-jre Upon completing the installation, use the following command to confirm the correct and successful installation of the Java version: sudo update-java-alternatives --list Switching and setting the default Java version To switch between Java versions and set a default version on Ubuntu Linux, you can use the update-java-alternatives command.  sudo update-java-alternatives --set <java_version> In this case, the Java version 17 will be set as default: sudo update-java-alternatives --set java-1.17.0-openjdk-amd64 To check if Java version 17 is the default version, run the command:  java -version The output shows that the default version of Java is version 17. Managing and Switching Java Versions in Ubuntu Conclusion In conclusion, managing multiple Java versions on Ubuntu Linux using update-java-alternatives is a simple yet effective process. By following the steps outlined in this article, users can seamlessly switch between different Java environments, ensuring compatibility with various projects and taking advantage of the latest features and optimizations offered by different Java versions. Because Java version management is flexible, developers may design reliable and effective Java apps without sacrificing system performance or stability.
22 August 2025 · 4 min to read
Ubuntu

How to Install and Configure SSH on Ubuntu 22.04

A secure connection between a client and a server is made possible via the SSH network protocol. Since all communications are encrypted, distant network attacks and data theft across the network are avoided. Let’s say you have ordered a cloud server from Hostman. You will need SSH installed and configured to connect to and administer the server. The guide below will describe how to install SSH on Ubuntu 22.04 and configure it. SSH Key configuration is pretty simple on Ubuntu Prerequisites Before proceeding with the installation and configuration of the Secure Shell service, ensure the following requirements are met: Linux Command Line Skills for Configuration Having a solid grasp of basic Linux commands like sudo, apt, nano, and systemctl is essential when setting up the service. These commands will be frequently used during the installation and configuration process. It's crucial to be comfortable working within the command line environment to manage the service effectively. Root or Sudo Access for Setup To install and configure the server, administrative (root) privileges are required. Users must either have sudo access or be logged in as root. Without these privileges, the setup process cannot proceed. Internet Connection for Package Download A stable internet connection is necessary to install the OpenSSH server and any additional related packages. Without a functional connection, the system cannot retrieve the required software components. Configuring Firewall for Access If a firewall, like ufw, is enabled on the system, it may block remote access by default. It is essential to configure your firewall to allow incoming connections. Use ufw or another firewall tool to ensure port 22 is open and accessible. Access to the System (Local or Remote) To configure the service locally, you must have physical access to your computer; otherwise, it must be remotely accessible through its IP address. To connect, make sure the system is correctly linked to the network. Don't forget, that you can deploy your cloud server fast and cheap by choosing our VPS Server Hosting. Step 1: Prepare Ubuntu The first thing you need to do before you start installing SSH on Ubuntu is to update all apt packages to the latest versions. To do this, use the following command: sudo apt update && sudo apt upgrade Step 2: Install SSH on Ubuntu OpenSSH is not pre-installed on the system, so let's install it manually. To do this, type in the terminal: sudo apt install openssh-server The installation of all the necessary components will begin. Answer "Yes" to all the system prompts.  After the installation is complete, go to the next step to start the service. Step 3: Start SSH Now you need to enable the service you just installed using the command below: sudo systemctl enable --now ssh On successful startup, you will see the following system message. The --now key helps you launch the service and simultaneously set it to start when the system boots. To verify that the service is enabled and running successfully, type: sudo systemctl status ssh The output should contain the Active: active (running) line, which indicates that the service is successfully running. If you want to disable the service, execute:  sudo systemctl disable ssh It disables the service and prevents it from starting at boot. Step 4: Configure the firewall Before connecting to the server via SSH, check the firewall to ensure it is configured correctly. In our case, we have the UFW installed, so we will use the following command: sudo ufw status In the output, you should see that SSH traffic is allowed. If you don't have it listed, you need to allow incoming SSH connections. This command will help with this: sudo ufw allow ssh Step 5: Connect to the server Once you complete all the previous steps, you can log into the server using the SSH protocol. You will need the IP address or domain name of the server as well as the name of a user that was created on the server in order to complete this step. In the terminal line, enter the command: ssh username@IP_address Or:  ssh username@domain Important: To successfully connect to a remote server, SSH must be installed and configured on the remote server and the user's computer from which you make the connection.  - Step 6 (optional): Create Key Pair for Secure Authentication For enhanced security, consider configuring a key pair instead of relying on password authentication. To generate one, use the following command: ssh-keygen Step 7: Configure SSH Having completed the previous five steps, you can already connect to the server remotely. However, you can further increase the connection's security by changing the default connection port to another or changing the password authentication to key authentication. These and other changes require editing the SSH configuration file. The main OpenSSH server settings are stored in the main configuration file sshd_config (location: /etc/ssh). Before you start editing, you should create a backup of this file:  sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.initial If you get any errors after editing the configuration file, you can restore the original file without problems. After creating the backup, you can proceed to edit the configuration file. To do this, open it using the nano editor: sudo nano /etc/ssh/sshd_config In the file, change the port to a more secure one. It is best to set values from the dynamic range of ports (49152 - 65535) and use different numbers for additional security. For example, let's change the port value to 49532. To do this, we uncomment the corresponding line in the file and change the port as shown in the screenshot below. SSH Key Configuration Description in Linux Terminal In addition to this setting, we recommend changing the password authentication mode to a more secure key authentication mode. To do this, uncomment the corresponding line and make sure the value is "Yes", as shown in the screenshot. Authentication Key should be Enabled Now, let's prohibit logging on to the server as a superuser by changing the corresponding line as shown in the picture below. Don't Forget to Close Access to Root Login There are other settings you can configure to increase the server security:  UseDNS checks if the hostname matches its IP address. The value "Yes" enables this parameter. PermitEmptyPasswords prohibits using empty passwords for authentication if the value is "No." MaxAuthTries limits the number of unsuccessful attempts to connect to the server within one communication session.  AllowUsers and AllowGroups are responsible for the list of users and groups allowed to access the server: # AllowUsers User1, User2, User3# AllowGroups Group1, Group2, Group3 Login GraceTime sets the time provided for successful authorization. We recommend reducing the value of this parameter by four times. ClientAliveInterval limits the time of user inactivity. After exceeding the specified limit, the user is disconnected. After making all the changes in the main configuration file, save them and close the editor.  Restart the service to make the changes take effect: sudo systemctl restart ssh If you have changed the port in the configuration file, you should connect using the new port:  ssh -p port_number username@IP_address Or: ssh -p port_number_port_username@domain Troubleshooting Connection Issues Ensure the service is running with: sudo systemctl status ssh Restart it if necessary: sudo systemctl restart ssh Check firewall settings to allow traffic on port 22: sudo ufw allow 22 Confirm the system is reachable by running: ping <server-ip-address> Disabling the Service If you need to disable remote access for any reason, follow these steps: Stop the Service To temporarily stop accepting connections: sudo systemctl stop ssh Prevent Automatic Startup To disable it from starting on reboot: sudo systemctl disable ssh Confirm Inactive Status Verify that the service is no longer running: sudo systemctl status ssh Uninstall the Server If the service is no longer needed, remove it and its associated configuration files: sudo apt remove openssh-server Conclusion This article presents a step-by-step guide on installing and configuring SSH in Ubuntu 22.04 and describes how to edit the main configuration file to improve security. We hope this guide helps you to set up a secure remote connection to your Ubuntu server. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS.To see more about SSH keys click here.
21 August 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support