Sign In
Sign In

How to Compare Python Strings

How to Compare Python Strings
Hostman Team
Technical writer
Python
11.12.2023
Reading time: 7 min

Strings in Python are sequences of characters enclosed in quotes. They are used mainly for writing textual information. As with ordinary numbers, character sequences can be compared. However, this process has its peculiarities, which we will discuss later.

This tutorial will break down the possible ways to compare strings in Python and provide illustrative examples for each of them.

Comparison operators

To compare two strings in Python, you need to learn how the comparison operators work.

In the table below, we will break down the existing comparison operators and give examples to help you understand how they work. In the examples, we will use unequal sequences of characters "dog" and "cat."

Operator

Name

Example

==

Equal

'dog' == 'cat'

Comparison result:

False

!=

Not equal

'dog' != 'cat'

Comparison result:

True

>

Greater than

'dog' > 'cat'

Comparison result:

True

<

Less than

'dog' < 'cat'

Comparison result:

False

>=

Greater than or equal to

'dog' >= 'cat'

Comparison result:

True

<=

Less than or equal to

'dog' <= 'cat'

Comparison result:

False

All operators in the table return true if the comparison condition is met. In the opposite case, they return false.

In the case of the last four operators in the table, character-by-character comparison is performed. The first characters of each sequence are taken first, then the second characters, and so on. It is also worth considering that identical characters are not equal if they have different cases. So, for example, the symbol "X" will have a lower value than "x". To find out the ordinal value of a character, use the following command:

ord(character)

For example, to find the ordinal value of the letter 'X' with upper case and the letter 'x' with lower case, we can use this:

print('The ordinal value of X = ', ord('X'), '; and x = ', ord('x'))

The output will tell us that X’s ordinal number is 88, while x’s is 120. 

It is also worth mentioning that when comparing two sequences of characters that have the same substring at the beginning (e.g., "Orange" and "Orange Juice"), the larger one will be the one with more characters.

Comparing strings entered from the keyboard

In this chapter, we will compare sequences of characters entered from the keyboard. For this purpose, we will use the comparison operators (==, !=, <, >, <=, >=), explained in the previous chapter.

So, in order to compare two strings in Python entered from the keyboard, let's write the following code:

first_string = input('Enter first string:\n')
second_string = input('Enter the second line:\n')

if first_string > second_string:
    print(f "In the dictionary, the sequence {first_string} is located after the sequence {second_string}")
elif first_string < second_string:
    print(f "In the dictionary, the sequence {first_string} is located before the sequence {second_string}")
else:
    print(f "The strings {first_string} and {second_string} are the same!")

In this code, we read two character sequences using the input() function and then work out all possible cases using the if-elif-else construct. If we try entering different character sequences, say "lake" and "river", the output will tell us that the lake sequence is located before the river sequence.

Now, let's enter the same words but in reverse (first "river" and then "lake”). In this case, the output shows that the river sequence is located before the lake sequence.

Finally, if we enter two identical sequences ("lake" both times), the output will tell us that the sequences are the same.

-

Case-insensitive string comparison

In the previous sections, we have drawn your attention several times to the importance of case when comparing a sequence of characters. However, this can be circumvented by using the language's built-in methods.

To compare a string to a case-insensitive string in Python, use the string methods upper() and lower(). The first brings a sequence of characters entirely to upper case, and the second to lower case. Their syntax is as follows:

string.upper()
string.lower()

Let's look at how the methods work using an example:

example_string1 = 'orange'
example_string2 = 'ORANGE'

print(example_string1 == example_string2)
print(example_string1.upper() == example_string2)
print(example_string1 == example_string2.lower())

In the example above, we create two string variables and pass them the same values but in different cases. Then, we display three comparison results on the screen. In the first case, we compare the original sequences. In the second, we use the upper() method to convert the first string to upper case and then perform the comparison. And finally, in the third case, we convert the second sequence to lower case.

Image8

As you can see from the picture above, in the first case, the character sequences are not equal to each other because they are transmitted with different cases. Still, in the second and third cases, they are equal because of the transformations performed on them.

Using language methods

Let's look at the existing string methods that will help us perform the comparison.

The __eq__ method

The first method is __eq__(). It is equivalent to the == operator, which we considered in the very first chapter of this guide. Its syntax is as follows:

first_string.__eq__(second_string)

Now, let's use it in an example:

first_string = input('Enter first string:\n')
second_string = input('Enter second string:\n')

If first_string.__eq__(second_string):
    print("The sequences {} and {} are the same!".format(first_string,second_string))
else:
    print("The sequences {} and {} are different!".format(first_string,second_string))

As a result, we get the following:

Enter first string:
New York
Enter second string:
Washington
The sequences New York and Washington are different!

The startswith() and endswith() methods

The next two methods are startswith() and endswith(). The former is useful when you want to compare the elements of a Python string located at the beginning of the string against a given character pattern. The latter works the same way but compares to the end of the sequence rather than the beginning.

The syntax for startswith() and endswith() is as follows:

source_string.startswith(pattern)
source_string.endswith(pattern)

Here's an example:

example_string = "The string is written to test the method"

print(example_string.startswith("String"))
print(example_string.endswith("method")))

The result of the code is shown in the image below.

Image5 (1)

Using regular expressions

In addition to the methods and operators discussed above, it is possible to use regular expressions to compare strings in Python.

A regular expression is a specific pattern of characters by which strings are selected. You can create a unique pattern and compare strings or whole text to it. 

As an example, let's create a list containing the names of berries and a regular expression that will be compared to them and return only those sequences that contain the substring "berry" in their names. 

Below, we will write the code to implement the task. You need to import the re module to use regular expressions in your code.

import re

example_list = ['cowberry', 'watermelon', 'cherry', 'blackberry']
expression = re.compile('berry')

for berry in example_list:
    if expression.search(berry):
        print(f"{berry} - this berry contains the substring berry in its name.")

As a result, after comparing the regular expression with the list of berry names, we get the following:

cowberry - this berry contains the substring berry in its name
blackberry - this berry contains the substring berry in its name

As we can see, only two berries fit the filter we created.

Conclusion

In this tutorial, we have demonstrated several ways to compare strings in Python. All of them are unique in their own way, so the choice of the method depends on the specific situation. We hope this guide will make the string comparison in Python much easier for you.

If you want to build a web service using Python, you can rent a cloud server at competitive prices with Hostman.

Python
11.12.2023
Reading time: 7 min

Similar

Python

How to Delete Characters from a String in Python

When writing Python code, developers often need to modify string data. Common string modifications include: Removing specific characters from a sequence Replacing characters with others Changing letter case Joining substrings into a single sequence In this guide, we will focus on the first transformation—deleting characters from a string in Python. It’s important to note that strings in Python are immutable, meaning that any method or function that modifies a string will return a new string object with the changes applied. Methods for Deleting Characters from a String This section covers the main methods in Python used for deleting characters from a string. We will explore the following methods: replace() translate() re.sub() For each method, we will explain the syntax and provide practical examples. replace() The first Pyhton method we will discuss is replace(). It is used to replace specific characters in a string with others. Since strings are immutable, replace() returns a new string object with the modifications applied. Syntax: original_string.replace(old, new[, count]) Where: original_string – The string where modifications will take place old – The substring to be replaced new – The substring that will replace old count (optional) – The number of occurrences to replace (if omitted, all occurrences will be replaced) First, let’s remove all spaces from the string "H o s t m a n": example_str = "H o s t m a n" result_str = example_str.replace(" ", "") print(result_str) Output: Hostman We can also use the replace() method to remove newline characters (\n). example_str = "\nHostman\nVPS" print(f'Original string: {example_str}') result_str = example_str.replace("\n", " ") print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS String after adjustments: Hostman VPS The replace() method has an optional third argument, which specifies the number of replacements to perform. example_str = "Hostman VPS Hostman VPS Hostman VPS" print(f'Original string: {example_str}') result_str = example_str.replace("Hostman VPS", "", 2) print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS Hostman VPS Hostman VPS String after adjustments: Hostman VPS Here, only two occurrences of "Hostman VPS" were removed, while the third occurrence remained unchanged. We have now explored the replace() method and demonstrated its usage in different situations. Next, let’s see how we can delete and modify characters in a string using translate(). translate( The Python translate() method functions similarly to replace() but with additional flexibility. Instead of replacing characters one at a time, it allows mapping multiple characters using a dictionary or translation table. The method returns a new string object with the modifications applied. Syntax: original_string.translate(mapping_table) In the first example, let’s remove all occurrences of the $ symbol in a string and replace them with spaces: example_str = "Hostman$Cloud$—$Cloud$Service$Provider." print(f'Original string: {example_str}') result_str = example_str.translate({ord('$'): ' '}) print(f'String after adjustments: {result_str}') Output: Original string: Hostman$Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. To improve code readability, we can define the mapping table before calling translate(). This is useful when dealing with multiple replacements: example_str = "\nHostman%Cloud$—$Cloud$Service$Provider.\n" print(f'Original string: {example_str}') # Define translation table example_table = {ord('\n'): None, ord('$'): ' ', ord('%'): ' '} result_str = example_str.translate(example_table) print(f'String after adjustments: {result_str}') Output: Original string: Hostman%Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. re.sub() In addition to replace() and translate(), we can use regular expressions for more advanced character removal and replacement. Python's built-in re module provides the sub() method, which searches for a pattern in a string and replaces it. Syntax: re.sub(pattern, replacement, original_string [, count=0, flags=0]) pattern – The regular expression pattern to match replacement – The string or character that will replace the matched pattern original_string – The string where modifications will take place count (optional) – Limits the number of replacements (default is 0, meaning replace all occurrences) flags (optional) – Used to modify the behavior of the regex search Let's remove all whitespace characters (\s) using the sub() method from the re module: import re example_str = "H o s t m a n" print(f'Original string: {example_str}') result_str = re.sub('\s', '', example_str) print(f'String after adjustments: {result_str}') Output: Original string: H o s t m a nString after adjustments: Hostman Using Slices to Remove Characters In addition to using various methods to delete characters, Python also allows the use of slices. As we know, slices extract a sequence of characters from a string. To delete characters from a string by index in Python, we can use the following slice: example_str = "\nHostman \nVPS" print(f'Original string: {example_str}') result_str = example_str[1:9] + example_str[10:] print(f'String after adjustments: {result_str}') In this example, we used slices to remove newline characters. The output of the code: Original string:HostmanVPSString after adjustments: Hostman VPS Apart from using two slice parameters, you can also use a third one, which specifies the step size for index increments. For example, if we set the step to 2, it will remove every odd-indexed character in the string. Keep in mind that indexing starts at 0. Example: example_str = "Hostman Cloud" print(f'Original string: {example_str}') result_str = example_str[::2] print(f'String after adjustments: {result_str}') Output: Original string: Hostman CloudString after adjustments: HsmnCod Conclusion In this guide, we learned how to delete characters from a string in Python using different methods, including regular expressions and slices. The choice of method depends on the specific task. For example, the replace() method is suitable for simpler cases, while re.sub() is better for more complex situations.
23 August 2025 · 5 min to read
Python

Command-Line Option and Argument Parsing using argparse in Python

Command-line interfaces (CLIs) are one of the quickest and most effective means of interacting with software. They enable you to provide commands directly which leads to quicker execution and enhanced features. Developers often build CLIs using Python for several applications, utilities, and automation scripts, ensuring they can dynamically process user input. This is where the Python argparse module steps in. The argparse Python module streamlines the process of managing command-line inputs, enabling developers to create interactive and user-friendly utilities. As part of the standard library, it allows programmers to define, process, and validate inputs seamlessly without the need for complex logic. This article will discuss some of the most important concepts, useful examples, and advanced features of the argparse module so that you can start building solid command-line tools right away. How to Use Python argparse for Command-Line Interfaces This is how to use argparse in your Python script: Step 1: Import Module First import the module into your Python parser script: import argparse This inclusion enables parsing .py arg inputs from the command line. Step 2: Create an ArgumentParser Object The ArgumentParser class is the most minimal class of the Python argumentparser module's API. To use it, begin by creating an instance of the class: parser = argparse.ArgumentParser(description="A Hostman tutorial on Python argparse.") Here: description describes what the program does and will be displayed when someone runs --help. Step 3: Add Inputs and Options Define the parameters and features your program accepts via add_argument() function: parser.add_argument('filename', type=str, help="Name of the file to process") parser.add_argument('--verbose', action='store_true', help="Enable verbose mode") Here: filename is a mandatory option. --verbose is optional, to allow you to set the flag to make it verbose. Step 4: Parse User Inputs Process the user-provided inputs by invoking the parse_args() Python method: args = parser.parse_args() This stores the command-line values as attributes of the args object for further use in your Python script.  Step 5: Access Processed Data Access the inputs and options for further use in your program: For example: print(f"File to process: {args.filename}") if args.verbose:     print("Verbose mode enabled") else:     print("Verbose mode disabled") Example CLI Usage Here are some scenarios to run this script: File Processing Without Verbose Mode python3 file.py example.txt File Processing With Verbose Mode python3 file.py example.txt --verbose Display Help If you need to see what arguments the script accepts or their description, use the --help argument: python3 file.py --help Common Examples of argparse Usage Let's explore a few practical examples of the module. Example 1: Adding Default Values Sometimes, optional inputs in command-line interfaces need predefined values for smoother execution. With this module, you can set a default value that applies when someone doesn’t provide input. This script sets a default timeout of 30 seconds if you don’t specify the --timeout parameter. import argparse # Create the argument parser parser = argparse.ArgumentParser(description="Demonstrating default argument values.") # Pass an optional argument with a default value parser.add_argument('--timeout', type=int, default=30, help="Timeout in seconds (default: 30)") # Interpret the arguments args = parser.parse_args() # Retrieve and print the timeout value print(f"Timeout value: {args.timeout} seconds") Explanation Importing Module: Importing the argparse module. Creating the ArgumentParser Instance: An ArgumentParser object is created with a description so that a short description of the program purpose is provided. This description is displayed when the user runs the program via the --help option. Including --timeout: The --timeout option is not obligatory (indicated by the -- prefix). The type=int makes the argument for --timeout an integer. The default=30 is provided so that in case the user does not enter a value, then the timeout would be 30 seconds. The help parameter adds a description to the argument, and it will also appear in the help documentation. Parsing Process: The parse_args() function processes user inputs and makes them accessible as attributes of the args object. In our example, we access args.timeout and print out its value. Case 1: Default Value Used If the --timeout option is not specified, the default value of 30 seconds is used: python file.py Case 2: Custom Value Provided For a custom value for --timeout (e.g., 60 seconds), apply: python file.py --timeout 60 Example 2: Utilizing Choices The argparse choices parameter allows you to restrict an argument to a set of beforehand known valid values. This is useful if your program features some specific modes, options, or settings to check. Here, we will specify a --mode option with two default values: basic and advanced. import argparse # Creating argument parser parser = argparse.ArgumentParser(description="Demonstrating the use of choices in argparse.") # Adding the --mode argument with predefined choices parser.add_argument('--mode', choices=['basic', 'advanced'], help="Choose the mode of operation") # Parse the arguments args = parser.parse_args() # Access and display the selected mode if args.mode: print(f"Mode selected: {args.mode}") else: print("No mode selected. Please choose 'basic' or 'advanced'.") Adding --mode: The choices argument indicates that valid options for the --mode are basic and advanced. The application will fail when the user supplies an input other than in choices. Help Text: The help parameter gives valuable information when the --help command is executed. Case 1: Valid Input To specify a valid value for --mode, utilize: python3 file.py --mode basic Case 2: No Input Provided For running the program without specifying a mode: python3 file.py Case 3: Invalid Input If a value is provided that is not in the predefined choices: python3 file.py --mode intermediate Example 3: Handling Multiple Values The nargs option causes an argument to accept more than one input. This is useful whenever your program requires a list of values for processing, i.e., numbers, filenames, or options. Here we will show how to use nargs='+' to accept a --numbers option that can take multiple integers. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating how to handle multiple values using argparse.") # Add the --numbers argument with nargs='+' parser.add_argument('--numbers', nargs='+', type=int, help="List of numbers to process") # Parse the arguments args = parser.parse_args() # Access and display the numbers if args.numbers: print(f"Numbers provided: {args.numbers}") print(f"Sum of numbers: {sum(args.numbers)}") else: print("No numbers provided. Please use --numbers followed by a list of integers.") Adding the --numbers Option: The user can provide a list of values as arguments for --numbers. type=int interprets the input as an integer. If a non-integer input is provided, the program raises an exception. The help parameter gives the information.  Parsing Phase: After parsing the arguments, the input to --numbers is stored in the form of a list in args.numbers. Utilizing the Input: You just need to iterate over the list, calculate statistics (e.g., sum, mean), or any other calculation on the input. Case 1: Providing Multiple Numbers To specify multiple integers for the --numbers parameter, execute: python3 file.py --numbers 10 20 30 Case 2: Providing a Single Number If just one integer is specified, run: python3 file.py --numbers 5 Case 3: No Input Provided If the script is run without --numbers: python3 file.py Case 4: Invalid Input In case of inputting a non-integer value: python3 file.py --numbers 10 abc 20 Example 4: Required Optional Arguments Optional arguments (those that begin with the --) are not mandatory by default. But there are times when you would like them to be mandatory for your script to work properly. You can achieve this by passing the required=True parameter when defining the argument. In this script, --config specifies a path to a configuration file. By leveraging required=True, the script enforces that a value for --config must be provided. If omitted, the program will throw an error. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating required optional arguments in argparse.") # Add the --config argument parser.add_argument('--config', required=True, help="Path to the configuration file") # Parse the arguments args = parser.parse_args() # Access and display the provided configuration file path print(f"Configuration file path: {args.config}") Adding the --config Option: --config is considered optional since it starts with --. However, thanks to the required=True parameter, users must include it when they run the script. The help parameter clarifies what this parameter does, and you'll see this information in the help message when you use --help. Parsing: The parse_args() method takes care of processing the arguments. If someone forgets to include --config, the program will stop and show a clear error message. Accessing the Input: The value you provide for --config gets stored in args.config. You can then use this in your script to work with the configuration file. Case 1: Valid Input For providing a valid path to the configuration file, use: python3 file.py --config settings.json Case 2: Missing the Required Argument For running the script without specifying --config, apply: python3 file.py Advanced Features  While argparse excels at handling basic command-line arguments, it also provides advanced features that enhance the functionality and usability of your CLIs. These features ensure your scripts are scalable, readable, and easy to maintain. Below are some advanced capabilities you can leverage. Handling Boolean Flags Boolean flags allow toggling features (on/off) without requiring user input. Use the action='store_true' or action='store_false' parameters to implement these flags. parser.add_argument('--debug', action='store_true', help="Enable debugging mode") Including --debug enables debugging mode, useful for many Python argparse examples. Grouping Related Arguments Use add_argument_group() to organize related arguments, improving readability in complex CLIs. group = parser.add_argument_group('File Operations') group.add_argument('--input', type=str, help="Input file") group.add_argument('--output', type=str, help="Output file") Grouped arguments appear under their own section in the --help documentation. Mutually Exclusive Arguments To ensure users select only one of several conflicting options, use the add_mutually_exclusive_group() method. group = parser.add_mutually_exclusive_group() group.add_argument('--json', action='store_true', help="Output in JSON format") group.add_argument('--xml', action='store_true', help="Output in XML format") This ensures one can choose either JSON or XML, but not both. Conclusion The argparse Python module simplifies creating reliable CLIs for handling Python program command line arguments. From the most basic option of just providing an input to more complex ones like setting choices and nargs, developers can build user-friendly and robust CLIs. Following the best practices of giving proper names to arguments and writing good docstrings would help you in making your scripts user-friendly and easier to maintain.
21 July 2025 · 10 min to read
Python

How to Get the Length of a List in Python

Lists in Python are used almost everywhere. In this tutorial we will look at four ways to find the length of a Python list: by using built‑in functions, recursion, and a loop. Knowing the length of a list is most often required to iterate through it and perform various operations on it. len() function len() is a built‑in Python function for finding the length of a list. It takes one argument—the list itself—and returns an integer equal to the list’s length. The same function also works with other iterable objects, such as strings. Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany"] count = len(Country_list) print("There are", count, "countries") Output: There are 4 countries Finding the Length of a List with a Loop You can determine a list’s length in Python with a for loop. The idea is to traverse the entire list while incrementing a counter by  1 on each iteration. Let’s wrap this in a separate function: def list_length(list): counter = 0 for i in list: counter = counter + 1 return counter Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany", "Japan"] count = list_length(Country_list) print("There are", count, "countries") Output: There are 5 countries Finding the Length of a List with Recursion The same task can be solved with recursion: def list_length_recursive(list): if not list: return 0 return 1 + list_length_recursive(list[1:]) Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland"] count = list_length_recursive(Country_list) print("There are", count, "countries") Output: There are 6 countries How it works. The function list_length_recursive() receives a list as input. If the list is empty, it returns 0—the length of an empty list. Otherwise it calls itself recursively with the argument list[1:], a slice of the original list starting from index 1 (i.e., the list without the element at index 0). The result of that call is added to 1. With each recursive step the returned value grows by one while the list shrinks by one element. length_hint() function The length_hint() function lives in the operator module. That module contains functions analogous to Python’s internal operators: addition, subtraction, comparison, and so on. length_hint() returns the length of iterable objects such as strings, tuples, dictionaries, and lists. It works similarly to len(): from operator import length_hint Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland", "Sweden"] count = length_hint(Country_list) print("There are", count, "countries") Output: There are 7 countries Note that length_hint() must be imported before use. Conclusion In this guide we covered four ways to determine the length of a list in Python. Under equal conditions the most efficient method is len(). The other approaches are justified mainly when you are implementing custom classes similar to list.
17 July 2025 · 3 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support