Sign In
Sign In

Bash Regular Expressions

Bash Regular Expressions
Hostman Team
Technical writer
Linux
01.11.2024
Reading time: 10 min

One of the core principles of Unix systems is the extensive use of text data: configuration files, as well as input and output data in *nix systems, are often organized as plain text. Regular expressions are a powerful tool for manipulating text data. This guide delves into the intricacies of using regular expressions in Bash, helping you fully harness the power of the command line and scripts in Linux.

What Are Regular Expressions?

Regular expressions are specially formatted strings used to search for character patterns in text. They resemble shell wildcards in some ways, but their capabilities are much broader. Many text-processing utilities in Linux and programming languages include a regular expression engine. However, different programs and languages often employ different regular expression dialects. This article focuses on the POSIX standard to which most Linux utilities adhere.

The grep Utrequires at least one match of theility

The grep program is the primary tool for working with regular expressions. grep reads data from standard input, searches for matches to a specified pattern, and outputs all matching lines. grep is typically pre-installed on most distributions.

You can try the commands in a virtual machine or a VPS to practice using regular expressions.

The syntax of grep is as follows:

grep [options] regular_expression [file...]

The simplest use case for grep is finding lines that contain a fixed substring. In the example below, grep outputs all lines that contain the sequence nologin:

grep nologin /etc/passwd

Output:

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
games:x:5:60:games:/usr/games:/usr/sbin/nologin
...

grep has many options, which are detailed in the documentation. Here are some useful options for working with regular expressions:

  • -v — Inverts the match criteria. With this option, grep outputs lines that do not contain matches:

ls /bin | grep -v zip

# Output:
411toppm 7z 7za 7zr ...
  • -i — Ignores case.

  • -o — Outputs only the matches, not the entire lines:

ls /bin | grep -o zip

# Output:
zip zip zip zip ...
  • -w — Searches for lines containing whole words matching the pattern.

ls /bin | grep -w zip

# Output:
gpg-zip
zip

For comparison, the same command without the -w option also includes lines where the pattern appears as a substring within a word.

ls /bin | grep zip

# Output:
bunzip2 bzip2 bzip2recover funzip

Basic Regular Expressions (BRE)

As previously mentioned, there are multiple dialects of regular expressions. The POSIX standard defines two main types of implementations: Basic Regular Expressions (BRE), which are supported by almost all POSIX-compliant programs, and Extended Regular Expressions (ERE), which allow for more complex patterns but aren't supported by all utilities. We'll start by exploring the features of BRE.

Metacharacters and Literals

We've already encountered simple regular expressions. For example, the expression “zip” represents a string with the following criteria: it must contain at least three characters; it includes the characters “z”, “i”, and “p” in that exact order; and there are no other characters in between. Characters that match themselves (like “z”, “i”, and “p”) are called literals. Another category is metacharacters, which are used to define various search criteria. Metacharacters in BRE include:

^ $ . [ ] * \ -

To use a metacharacter as a literal, you need to escape it with a backslash (\). Note that some metacharacters have special meanings in the shell, so enclose it in quotes when passing a regular expression as a command argument.

Any Character

The dot (.) metacharacter matches any character in that position. For example:

ls /bin | grep '.zip'

Output:

bunzip2
bzip2
bzip2recover
funzip
gpg-zip
gunzip
gzip
mzip
p7zip
pbzip2
preunzip
prezip
prezip-bin
streamzip
unzip
unzipsfx

One important detail: the zip program itself isn’t included in the output because the dot (.) metacharacter increases the required match length to four characters.

Anchors

The caret (^) and dollar sign ($) in regular expressions serve as anchors. This means that, when included, a match can only occur at the start of a line (^) or at the end ($).

ls /bin | grep '^zip'

# Output:
zip zipcloak zipdetails zipgrep …


ls /bin | grep 'zip$'

# Output:
funzip gpg-zip gunzip ...


ls /bin | grep '^zip$'

# Output:
zip

The regular expression ^$ matches empty lines.

Character Sets

Besides matching any character in a given position (.), regular expressions allow for matching a character from a specific set. This is done with square brackets. The following example searches for strings matching bzip or gzip:

ls /bin | grep '[bg]zip'

# Output:
bzip2
bzip2recover
gzip

All metacharacters lose their special meaning within square brackets, except two.

If a caret (^) is placed immediately after the opening bracket, the characters in the set are treated as excluded from that position. For example:

ls /bin | grep '[^bg]zip'

Output:

bunzip2
funzip
gpg-zip
gunzip
mzip
p7zip
preunzip
prezip
prezip-bin
streamzip
unzip
unzipsfx

With negation, we get a list of filenames containing zip but preceded by any character other than b or g. Note that zip is not included here; the negation requires the presence of some character in that position. The caret serves as a negation only if it appears immediately after the opening bracket; otherwise, it loses its special meaning.

Using a hyphen (-), you can specify character ranges. This lets you match a range of characters or even multiple ranges. For instance, to find all filenames that start with a letter or a number:

ls ~ | grep '^[A-Za-z0-9]'

Output:

backup
bin
Books
Desktop
docker
Documents
Downloads
GNS3
...

POSIX Character Classes

When using character ranges, one challenge is that ranges can be interpreted differently based on locale settings. For instance, the range [A-Z] may sometimes be interpreted lexicographically, potentially excluding lowercase a. To address this, the POSIX standard provides several classes that represent various character sets. Some of these classes include:

  • [:alnum:] — Alphanumeric characters; equivalent to [A-Za-z0-9] in ASCII.

  • [:alpha:] — Alphabetic characters; equivalent to [A-Za-z] in ASCII.

  • [:digit:] — Digits from 0 to 9.

  • [:lower:] and [:upper:] — Lowercase and uppercase letters, respectively.

  • [:space:] — Whitespace characters, including space, tab, carriage return, newline, vertical tab, and form feed.

Character classes don’t provide an easy way to express partial ranges, like [A-M]. Here’s an example of using a character class:

ls ~ | grep '[[:upper:]].*'

Output:

Books
Desktop
Documents
Downloads
GNS3
GOG Games
Learning
Music
...

Extended Regular Expressions (ERE)

Most POSIX-compliant applications and those using BRE (such as grep and the stream editor sed) support the features discussed above. The POSIX ERE standard allows for more expressive regular expressions, though not all programs support it. The egrep program traditionally supported the ERE dialect, but the GNU version of grep also supports ERE when run with the -E option.

In ERE, the set of metacharacters is expanded to include:

( ) { } ? + |

Alternation

Alternation allows for a match with one of multiple expressions. Similar to square brackets that allow a character to match one of several characters, alternation allows for matching one of multiple strings or regular expressions. Alternation is represented by the pipe (|):

echo "AAA" | grep -E 'AAA|BBB'

# Output:
AAA
echo "BBB" | grep -E 'AAA|BBB'

# Output:
BBB
echo "CCC" | grep -E 'AAA|BBB'

# Output: (no match)

Grouping

You can group elements of regular expressions and treat them as a single unit using parentheses. The following expression matches filenames starting with bz, gz, or zip. Without the parentheses, the regular expression would change meaning to match filenames starting with bz or containing gz or zip.

ls /bin | grep -E '^(bz|gz|zip)'

Output:

bzcat
bzgrep
bzip2
bzip2recover
bzless
bzmore
gzexe
gzip
zip
zipdetails
zipgrep
zipinfo
zipsplit

Quantifiers

Quantifiers specify the number of times an element can occur. BRE supports several quantifiers:

  • ? — Matches the preceding element zero or one time, meaning the previous element is optional:

echo "tet" | grep -E 'tes?t'

# Output:
tet
echo "test" | grep -E 'tes?t'

# Output:
test
echo "tesst" | grep -E 'tes?t'

# Output: (no match)
  • * — Matches the preceding element zero or more times. Unlike ?, this element can appear any number of times:

echo "tet" | grep -E 'tes*t'

# Output:
tet
echo "test" | grep -E 'tes*t'

# Output:
test
echo "tesst" | grep -E 'tes*t'

# Output:
tesst
  • + — Similar to *, but requires at least one match of the preceding element:

echo "tet" | grep -E 'tes+t'

# Output: (no match)
echo "test" | grep -E 'tes+t'

# Output:
test
echo "tesst" | grep -E 'tes+t'

# Output:
tesst

In BRE, special metacharacters { and } allow you to specify minimum and maximum match counts for the preceding element in four possible ways:

  • {n} — Matches if the preceding element occurs exactly n times.

  • {n,m} — Matches if the preceding element occurs at least n and at most m times.

  • {n,} — Matches if the preceding element occurs n or more times.

  • {,m} — Matches if the preceding element occurs no more than m times.

Example:

echo "tet" | grep -E "tes{1,3}t"

# Output: (no match)
echo "test" | grep -E "tes{1,3}t"

# Output:
test
echo "tesst" | grep -E "tes{1,3}t"

# Output:
tesst
echo "tessst" | grep -E "tes{1,3}t"

# Output:
tessst
echo "tesssst" | grep -E "tes{1,3}t"

# Output: (no match)

Only the lines where s appears one, two, or three times match the pattern.

Regular Expressions in Practice

To conclude, let’s look at a couple of practical examples of how regular expressions can be applied.

Validating Phone Numbers

Suppose we have a list of phone numbers where the correct format is (nnn) nnn-nnnn. Out of a list of 10 numbers, three are incorrectly formatted.

cat phonenumbers.txt

Output:

(185) 136-1035
(95) 213-1874
(37) 207-2639
(285) 227-1602
(275) 298-1043
(107) 204-2197
(799) 240-1839
(218) 750-7390
(114) 776-2276
(7012) 219-3089

The task is to identify the incorrect numbers. We can use the following command:

grep -Ev '^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$' phonenumbers.txt

Output:

(95) 213-1874
(37) 207-2639
(7012) 219-3089

Here, we used the -v option to invert the match and output only lines that do not match the specified format. Since parentheses are considered metacharacters in ERE, we escaped them with backslashes to treat them as literals.

Finding Improper File Names

The find command supports checking paths with regular expressions. It’s important to note that, unlike grep which matches parts of lines, find requires the whole path to match. Suppose we want to identify files and directories containing spaces or potentially problematic characters.

find . -regex '.*[^-_./0-9a-zA-Z].*'

The .* sequences at the beginning and end represent any number of any characters, which is necessary because find expects the entire path to match. Inside the square brackets, we use negation to exclude valid filename characters, meaning any file or directory name containing characters other than hyphens, underscores, digits, or Latin letters will appear in the output.

Conclusion

This article has covered a few practical examples of Bash regular expressions. Creating complex regular expressions might seem challenging at first. But over time, you’ll gain experience and skill in using regular expressions for searches across various applications that support them.

Linux
01.11.2024
Reading time: 10 min

Similar

Linux

How to Compress Files in Linux Using tar Command

The tar command basically functions to put together all files and directories into one archive without altering their structure. The approach simplifies organization, creation of the backup, and the transfer of files. Once packaged, you can compress these archives by using multiple ways such as using gzip, bzip2, or xz, which help optimize storage and enhance transfer speeds. Modern Linux distributions come with updated versions of tar, enabling seamless integration with compression tools like gzip for more efficient data handling. This makes tar a valuable asset for users managing large datasets, as it supports both file consolidation and compression in a single command. Thanks to its flexibility, tar is widely used across different Linux environments. It not only facilitates backup creation but also streamlines software distribution and the management of the important data. With an array of choices available, all users can customize archives according to their requirements, whether by excluding particular directories or files, preserving permissions, or securing sensitive data. For anyone dealing with extensive information or complex storage requirements, learning everything about the tar command is crucial. This all makes it an important utility to learn for Linux users. Understand the Syntax of tar  The tar command is fundamentally divided into four distinct parts: tar (keyword) -flags (options), used to execute a specific action name of the archive path to the desired file or directory It would be written as follows: tar -flags (archive_name) (path) Archiving Files and Directories tar used with the flag -cvf has the power to essentially archive the files and also the directories. For a File: tar -cvf collectionX.tar snake.txt For a Directory: tar -cvf DRcollection.tar newDir/ This would essentially archive the file snake.txt to collectionX.tar and the directory newDir to DRcollection.tar respectively.  If desired outcome is to archive multiple files and directories, then use the following commands.For Multiple Files: tar -cvf collectionX.tar snake.txt panther.txt Tiger.txt For Multiple Directories: tar -cvf DRcollection.tar newDir1/ newDir2/ newDir3/ Compressing Files and Directories tar used with the flag -czvf has the power to compress the files as well as the directories: For a File: tar -czvf collectionX.tar.gz snake.txt For a Directory:  tar -czvf DRcollection.tar.gz newDir/ -c archives the directories and files, -z pushes for gzip compression, -v is verbose which essentially shows what’s going on with compression, and -f allows to name the archive that is going to be compressed. Add .gz after tar, if you want to compress the files and directories. For Multiple Files: tar -cvf collectionX.tar.gz snake.txt panther.txt Tiger.txt  For Multiple Directories: tar -cvf DRcollection.tar.gz newDir1/ newDir2/ newDir3/ .bz2 used with tar and both used with -cjf allow to archive and compress files and directories. -j applies bzip2 compression. For a File (with bz2): tar -cjf collectionX.tar.bz2 snake.txt For a Directory (with bz2): tar -cjf DRcollection.tar.bz2 newDir/ .xz used with .tar and both used with -cJf allow you to archive and compress files and directories. In -cJf, -J means compress with xz. For a File (with xz): tar -cJf DRcollection.tar.xz file1.txt For a Directory (with xz): tar -cJf collectionX.tar.xz newDir/ Extracting Compressed .tar Files arch1.tar.gz, arch1.tar.bz2 and arch1.tar.xz are three compressed files. Extract tar.gz: tar -xvzf arch1.tar.gz -x stands for file extraction. Extract tar.bz2: tar -xvjf arch1.tar.bz2 Extract tar.xz: tar -xvJf arch1.tar.xz Extracting Specific Files Using Wildcards If you need to extract only a specific type of file out of an archive, do this: tar -xvf arch1.tar --wildcards '*.sh' It will give you only the files with .sh extension. --wildcards help search that specific type of file and enable pattern matching while *.sh ensures that you only extract the .sh type of files. Extracting to a Specific Directory If you need to extract the complete archive to a specific directory, do this: tar -xvf arch1.tar -C ./destinationDir/pathDir/ -C changes to the specified directory path and -xvf helps extract the archive there.  Managing .tar Archives Check Contents without Extracting If you need to know what's inside an archive but don't want to uncompress files, use commands like this: tar -tzf arch1.tar.gztar -tjf arch1.tar.bz2tar -tJf arch1.tar.xz -t gives details about what’s inside the compressed archives without performing extraction on it. Appending Files to an Existing Archive To append a new file to an archive: tar -rvf arch1.tar new.sh new.sh will be added to arch1.tar. That’s how you append a file into an existing archive.  Removing a Specific File from an Archive What if you need to delete a file from an archive without having to extract it, it can be done by using --delete. tar --delete -f arch1.tar new.sh  This will remove the file new.sh from the archive arch1.tar without extracting it.  Note that --delete does not work on the compressed files, only on archives.  Comparing Archive Contents with Current Directory If you have to examine the contents of your current working directory and compare them with the archive? use: tar --diff -f arch1.tar --diff will help compare the contents of arch1.tar with the content available in the present working directory. Troubleshooting Common .tar Errors "tar: Removing leading '/' from member names" This warning appears when absolute paths are used in an archive: tar -cvf arch1.tar /home/user/file.txt Solution: Use -p to preserve absolute paths. tar -cvpf arch1.tar /home/user/file.txt "tar: Error opening archive: Unrecognized archive format" This error occurs when the archive is corrupt or the wrong decompression command is used. Solution: Verify the file type: file arch1.tar.gz Use the correct decompression command: tar -xvzf arch1.tar.gz  # For .tar.gztar -xvjf arch1.tar.bz2  # For .tar.bz2tar -xvJf arch1.tar.xz   # For .tar.xz If corruption is suspected, check integrity: gzip -t arch1.tar.gzbzip2 -tv arch1.tar.bz2 Conclusion The tar utility serves as an important tool for archiving, compression and extraction. It provides efficiency, making it a crucial component of Linux storage management. With a variety of configurations and settings, tar functions as an evergreen solution catering to diverse use scenarios. Options such as -czvf and -xvzf determine the way files are stored and retrieved, granting users complete control over data compression. Furthermore, tar supports multiple compression tools like gzip, bzip2, and xz, allowing users to optimize both speed and compression ratio based on their specific needs. For Information Technology professionals, developers, and Linux users, learning everything about tar is invaluable. Whether it’s for managing backups, distribution of data effectively, or optimizing storage, tar is by far one of the most influential archiving tools. By selecting the right configurations and commands, users can significantly enhance their workflow, automate tasks, and efficiently handle large datasets.
12 March 2025 · 6 min to read
Linux

How to Use the Screen Utility in Linux

The Screen utility is a Linux window manager that allows you to switch between multiple processes in a single physical terminal. Screen provides a scrollable history buffer and a mechanism for copying and pasting text between windows. With Screen, you can create new windows with different programs, close the current windows, view a list of active windows, enable and disable output logging, and switch between windows. All windows work independently, and programs continue to run even when the session is disconnected from the user's terminal. This makes Screen a useful tool for efficiently managing multiple tasks in a single terminal. Installing the Screen Utility The Screen may be pre-installed in the operating system or require separate installation depending on the distribution. To install Screen, use the following command: For Ubuntu and Debian: apt install -y screen For CentOS and Fedora: yum install -y screen Or: dnf install -y screen Basic Commands Let's go over the basic commands for managing Linux Screen sessions. Starting a Screen Session To start Screen, simply enter the following command in your terminal: screen This will open a Screen session, create a new window, start a shell in it, and you will see a new window. Press Enter to proceed to enter commands. Creating a Named Session You can name your sessions, which is especially useful when working with multiple Screen sessions. To create a named session, use the following command: screen -S session_name It’s always helpful to choose a descriptive name for the session. Detaching from a Screen Session in Linux To detach from a Screen session at any time, type: Ctrl+a d The program running in the Screen session will continue to run in the background after you detach. Reattaching to a Screen Session in Linux To resume your Screen session, use the command: screen -r If you have multiple Screen sessions running, you need to specify the session ID or its name after the -r parameter. To see the list of currently running sessions, use: screen -ls You will see a list of sessions like this: There are screens on: 1468393.hostman (01/25/2025 02:07:34 PM) (Detached) 1466624.pts-3.1495851-user (01/25/2025 01:54:05 PM) (Detached) 2 Sockets in /run/screens/S-linuxize. To resume the session with ID 1466624.pts-3.1495851-username, enter: screen -r 1466624 To resume a session using its name, type: screen -r session_name Additional Options Screen offers a variety of useful features for convenient session management in the terminal.  You can customize each window to suit your needs, such as adjusting its size according to display settings or configuring options using a custom configuration file.  You can also pause a session and resume it later or run Screen in daemon mode to keep it running in the background.  Additionally, you can customize command keys, manage data flow, and enable logging.  It's also possible to switch between windows, change their titles, and use UTF-8 encoding, making terminal work more comfortable and adaptable to different tasks. Screen options: -a: Enables all possible features for each window, maximizing functionality. -A -[r|R]: Automatically adjusts all windows to fit the new screen width and height. -c file: Specifies an alternate configuration file instead of the default .screenrc. -d (-r): Detaches the current Screen session without terminating it so that you can reconnect later. -D (-r): Terminates the active connection to a remote session, but the session itself remains running and can be resumed. -D -RR: Takes all necessary actions to reconnect to an existing Screen session if one is available. If not, it starts a new one. -e xy: Changes the default keybindings for Screen commands to custom ones, which is useful for avoiding conflicts with other programs. -f: Enables data flow control; -fn disables it; -fa enables automatic flow control, which is helpful when working with large amounts of data. -h lines: Sets the scrollback buffer size, allowing you to scroll through more command history. -i: Interrupts data output on the screen when flow control is enabled, preventing terminal overload. -l: Logs session information to the system log to keep track of active sessions; -ln disables this. -ls [pattern]: Displays a list of all active Screen sessions currently connected. -L: Enables logging of all terminal output to a log file. -p window: Automatically selects the specified window on startup if it exists. -q: Runs Screen in “quiet” mode, suppressing unnecessary error messages. -V: Displays the version of Screen and then exits. -r [session]: Reconnects to a previously started but detached Screen session. -R: If an existing session is found, it reconnects to it; if not, it starts a new one. -S session_name: Assigns a name to the new session, making it easier to reconnect to it later. -t title: Sets a title for the window, which is displayed in the window list. -U: Enables UTF-8 encoding support for text display. -v: Displays the current version of the Screen program. -x: Attaches to an active session, allowing it to be used simultaneously on multiple screens. -X: Executes the specified command within an active Screen session. Working with Screen Windows You can work with multiple Screen sessions simultaneously, with several windows open for each session. To create a new window with a shell, press: Ctrl+a c The window will be automatically assigned a number from 0 to 9. Below are the common commands for managing windows in Screen: Ctrl+a c — Create a new window (with a shell). Ctrl+a " — Display a list of all windows. Ctrl+a 0 — Switch to window 0 (by number). Ctrl+a A — Rename the current window. Ctrl+a S — Split the current region horizontally into two regions. Ctrl+a | — Split the current region vertically into two regions. Ctrl+a tab — Move the input focus to the next region. Ctrl+a Ctrl+a — Toggle between the current and previous windows. Ctrl+a Q — Close all regions except the current one. Ctrl+a X — Close the current region. To see all commands, enter: Ctrl+a ? When Screen starts, it reads its configuration settings from /etc/screenrc and ~/.screenrc, if they exist. You can customize Screen's default settings to suit your preferences using the .screenrc file. This example includes a custom status line and several additional options: # Disable the startup message startup_message off # Automatically detach from the session when the connection is lost autodetach on # Set the scrollback buffer to 10,000 lines defscrollback 10000 # Enable logging for the current session logfile /path/to/screenlog Additional recommendations for customizing Screen configuration: Automatic Window Splitting on Startup Useful if you frequently work with multiple windows and want them to open automatically when Screen starts. screen -t shell1 split focus screen -t shell2 Logging All Sessions Useful for keeping a record of work. deflog on logfile $HOME/.screen/screenlog.%t Automatic Reconnection on Disconnection Useful when working with unstable connections. autodetach on reattach on Examples of Using Screen Example 1: To monitor file changes in real-time, you can use two Screen windows: one for editing the file and another for displaying its content using the command: tail -f filename This allows you to instantly see all changes made without having to re-run the command. Example 2: When working in a terminal over SSH using a Screen session, you won’t lose data if the connection is interrupted. Even if the connection drops, you can reconnect and resume work exactly where you left off by simply reattaching to the Screen session. Example 3: For long-running tasks, such as compiling code or performing a backup, you can start the task in one Screen session and monitor its progress. You can safely disconnect anytime, knowing the task will continue running. Later, you can reconnect to the session to check the results. Conclusion In this guide, we covered how to use Linux Screen to manage terminal sessions effectively. You learned how to: Create multiple windows within a single session. Switch between windows. Manage sessions, including detaching and resuming them. We also discussed how to customize the terminal using the .screenrc configuration file to make your work environment more convenient and personalized. You can now use Screen for a more comfortable and productive terminal experience by mastering these basic features. For more information about Screen, check out the Screen user's manual.
20 February 2025 · 7 min to read
Linux

How to Use if-else in Bash

Many programming languages have conditional statements, such as if-else. These statements are also present in Bash, the default shell used in almost all modern Linux distributions. The if-else statements are used to check conditions — they allow the execution of specific commands depending on whether the condition is true or false. The if-else statements work exactly the same way as in any programming language. In this article, we will discuss how to use if-else statements in the Bash shell through practical examples. The if Statement in Bash The if statement in Bash allows you to execute specific commands depending on the truth value of the given condition. Two logical statements are used to check for truth: True and False. The if statement is used when you need to check a condition. It controls the flow of script execution, allowing decisions to be made based on variable values, command results, and other conditions. The if statement works as follows: First, the program checks the condition (the condition can be a command or a mathematical expression) contained in the if statement. If the condition is true, the program executes the commands listed after the then keyword. If the condition is false, the program executes the commands listed after the else statement. The syntax of the if statement in Bash is as follows: if [condition]; then # commands to execute if the condition is true fi Let's break down the operation of the if statement with a simple practical example. We will create a script that asks the user for a number, and if the number entered is greater than 10, the system will return the message "The number is greater than 10." Create a new file with a .sh extension, for example, using the nano editor: nano greater_than_10.sh Insert the following code: #!/bin/bash read -p "Enter a number: " number if [ $number -gt 10 ]; then echo "The number is greater than 10." fi Provide the file with execute permissions: chmod +x greater_than_10.sh Now, run the script: ./greater_than_10.sh Output: Enter a number: Enter any number, for example, 32, and press Enter. Since 32 is greater than 10, and this condition returns True, the program will execute the echo command. Enter a number: 32The number is greater than 10 Let’s break down the script in more detail: The conditions are written in square brackets. In this example, the -gt operator is used (greater than, equivalent to the > symbol). Next, we check the condition. If it’s True, the program executes the command after the then keyword. The script ends with the fi keyword, signaling the end of the if block. However, this script has one major drawback: it does not handle the case when the entered number is less than 10. The script will not return anything because there is no condition for that case. To address this issue, we will use the else statement, which we will discuss in the next chapter. The if-else Statement in Bash In the previous section, we ran a script with only one condition in the if statement — True. We didn’t specify any action for the False condition. As a result, if we entered a value leading to False, there was no response. If we want the script to perform specific actions for the false condition False, we need to use the else statement, which follows the if statement. The if-else statement in Bash is used to perform conditional operations. It allows the execution of specific commands depending on whether the condition is true or false. The syntax for if-else is as follows: if [condition]; then # commands executed if the condition is true else # commands executed if the condition is false fi Remember that keywords, including if and else, in Bash shell scripts are case-sensitive. Be careful when using keywords in script files. Let's consider using the if-else statements in a practical example. In this case, we will create a Bash script that asks the user for a number, and the system will display whether the number is greater than or less than 10. Create a new file with a .sh extension: nano check.sh Insert the following code: #!/bin/bash read -p "Enter a number: " number if [ $number -gt 10 ]; then echo "The number is greater than 10." else echo "The number is less than or equal to 10." fi Grant the file execute permissions: chmod +x check.sh Now, run the script: ./check.sh The algorithm for the script works as follows: After the if keyword, we specify the condition in square brackets. In this example, we use the -gt operator (greater than, equivalent to the > symbol). The condition is checked. If the condition is true, the program executes the command after the then keyword— in this case, it prints the message "The number is greater than 10". If the condition is false, the program executes the command after the else keyword, printing the message "The number is less than or equal to 10". Once one of the conditions is met, the program will end, as indicated by the fi keyword at the end. Output if the number is greater than 10: Enter a number: 56The number is greater than 10. Output if the number is less than 10: Enter a number: 6The number is less than or equal to 10. Practical Use of if-else in Bash Let's look at the practical application of the if-else statement in Bash, which can be used when writing scripts. Script Example 1. Checking if Run as root First, we will create a script that checks whether the script file is run as the root user. This can be useful when writing scripts that require root privileges, such as installing packages as the root user. Create a file named check-for-root.sh: nano check-for-root.sh Use the following code to check for root user: #!/bin/bash if [[ $EUID -ne 0 ]]; then /usr/bin/printf "${R}>>>>${NC} Please run as root\n" exit 1 fi Grant the file execute permissions: chmod +x check-for-root.sh And run it: ./check-for-root.sh If the script is run as a regular user, the console will print the message "Please run as root". The check for the root user uses the condition $EUID -ne 0, where: $EUID is an environment variable that holds the numeric user ID. In Linux systems, the root user always has the ID 0, while other user accounts start at 1000. -ne is a comparison operator meaning "not equal". Instead of ne, you can also use !=. Script Example 2. Checking the Linux distribution Next, let's create another script that checks which Linux distribution is being used. If the script is run on Ubuntu, it will print the message "This is Ubuntu". If the script is run on any other Linux distribution, it will print "Not Ubuntu. You can run this script only on Ubuntu distributions". Create a file named check-for-distribution.sh: nano check-for-distribution.sh Use the following code: #!/bin/bash dist=`grep DISTRIB_ID /etc/*-release | awk -F '=' '{print $2}'` if [ "$dist" == "Ubuntu" ]; then echo "This is Ubuntu" else echo "Not Ubuntu. You can run this script only on Ubuntu distributions" fi Make the file executable: chmod +x check-for-distribution.sh And run it: ./check-for-distribution.sh If the script is run on an Ubuntu system, it will print "This is Ubuntu". On any other distribution, it will print "Not Ubuntu. You can run this script only on Ubuntu distributions". Script Example 3. Checking if File Exists Now, let’s look at another practical example. We will create a Bash script that checks if a file named file1.txt exists. If it doesn't exist, the script will create it. The script checks for the file in the same directory it is run. If the file already exists, the script will print a message without creating the file. Create a file named check-file.sh: nano check-file.sh Use the following script code: #!/bin/bash FILE="file1.txt" if [ ! -f "$FILE" ]; then touch "$FILE" echo "$FILE has been created." else echo "$FILE already exists." fi Grant execute permissions for the script: chmod +x check-file.sh Run the script: ./check-file.sh If the file1.txt file already exists in the directory from which the script is run, you will see the message "file1.txt already exists.". The file will not be created. Conclusion In this article, we reviewed the principles of logical statements such as if-else in the Bash shell and provided practical examples of using these statements. These examples are useful when writing scripts to automate system tasks or checks.
18 February 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support