Sign In
Sign In

How to Analyze Data with Metabase? A Comparison To 5 Most Popular Analytical Services

How to Analyze Data with Metabase? A Comparison To 5 Most Popular Analytical Services
Hostman Team
Technical writer
Infrastructure

What is Metabase? How to connect it to your database and use it for your analytics? What are the most popular Metabase alternatives and how do they compare? Read this article to find out everything about Metabase.

What is Metabase and how does it work?

Without the right tools, a database can be as impenetrable as a medieval dungeon crawling with carnivorous spiders.

But fear not, brave adventurer — Metabase is here to help you find and unlock all of the riches in your database.

With its intuitive UI, Metabase is your master key to accessing, presenting, and analyzing everything that lives inside your databases. Metabase is the open-source application that unlocks the full potential of your databases, allowing you to access, search, and share data in the easiest way possible. 

8302fb74d1bb041513710709c1280739

It is like having an intelligent, proactive and efficient digital analyst who’s always on the alert, and who can help you process and retrieve any of your data quickly and painlessly.

The simple and intuitive UI makes it possible to query even the tiniest piece of data in your database. More importantly, it presents the information in a clear and understandable way, so that you and your team can get the full benefit from the results of your query.

What makes Metabase such a popular tool?

I.T. professionals are known for their logical and analytical thinking. So when they get excited about something like Metabase, you can bet they have solid arguments to back it up.

Here are just a handful of features that have made Metabase the tool of choice for so many I.T. professionals:

  • Advanced query system that is equally effective with generic searches and laser-targeted database interrogations. Accessing data is as simple as asking a question about anything in your database. The Metabase query builder will serve up information you need in a way that is easy to digest for both analysts and non-technical users.

  • One-time-setup automated report generation. Metabase will automatically create reports about data changes in your database. Set it and forget it.

  • Intelligent tracking of important data changes with alerts. Set up alerts to keep owners up to date on changes in key data for which they are responsible.

  • Charts and dashboards that are as useful as they are visually appealing. With a strong focus on UI and UX, Metabase excels at presenting data and changes in a style that is clear and immediately understandable.

  • Craft dedicated embedded analytics. Metabase can also be used very effectively as a full-fledged data collector and manager for your clients.

How to set up Metabase

Before you can start working with Metabase, you need to follow a simple deployment and setup procedure.

Here’s everything you need to know.

Deploying

There are many ways to launch Metabase on your production platform.

The simplest way is to use cloud services that automated all the processes. All you need to do is to sign up to the service, select Metabase, and it will create an instance of the application on a fast and reliable server. Next, you will need to configure Metabase after the deployment is over.

Another way to install Metabase is to use the dedicated JAR file:

  1. Download the file from the official Metabase website

  2. Run the following command: java -jar metabase.jar

Alternatively, you can use the Docker image of Metabase If you’re used to working with containers.

There are also other methods for running Metabase. You can find them in the official Metabase documentation.

Setting up

Once you’ve set up Metabase on your server, you’ll be able to access it via localhost:3000.

Just open that address in your browser to begin.

Metabase will ask you to create an admin account. You’ll need to insert the standard personal details — name, last name, email, password, etc.

The next step is to connect your database. To do so, you’ll have to specify:

  • the hostname of the server with the database

  • the port to connect to the database

  • the database name

  • the username and password for accessing the database.

7806c717f1a993826008262ba6729ad6

And, that’s it. Once you’ve connected your database, you can check out the Metabase interface and start exploring all of its exciting functionality.

How to ask Metabase questions

Asking Questions is a key element of the Metabase system. It is like “queries on jet fuel” for your database software.

As an analyst, formulating the right Metabase Questions will be one of your main activities. They are the tool that will help you extract all of the important insights from the data you’re inspecting. While Metabase Questions are extremely powerful, creating them is an incredibly simple and intuitive process.

Let’s say you have a table with order data. It contains columns for subtotal, tax, total, etc., and you want to find all the orders with a tax of more than 5 dollars.

Using the filter system, you can ask Metabase to check the orders table for how many rows there are with a tax exceeding 5 dollars. To do this, you click on the Filter button, choose a column, choose the criteria to filter, and then click “Add filter”. Next, you might want to use the “Summarize” option to add up all of the rows with a tax of more than 5 dollars.

Filters in Metabase allow you to pick out the necessary data and get direct answers to your questions.

To help you get the most out of Metabase, we’ve prepared for you an in-depth Metabase query syntax tutorial.

How to visualize data

Presenting your data in a way that is appealing and easy to digest, is one of the key features of Metabase. All of the numbers, columns, rows, and cells are organized in a logical manner to facilitate understanding and data-driven decision-making.

Both visualization tools in Metabase are optimized for analyzing and monitoring any volume of data.

Creating charts

Metabase Charts depend heavily on the questions you ask. You can use built-in query editors to visualize data as charts.

To create a chart, you need to choose the “Visualize” option. Next, you’ll be able to choose one of the chart views that will present the data it gets from the question you ask. Finally, you will need to formulate the question.

55fafb6bf7e3b166b9efb717b7904afe

Let’s say you have an orders table with various categories of goods that your company sells. You can ask Metabase to filter some categories, summarize their performance characteristics and Visualize as a histogram.

Most importantly, you’ll be able to drill deeper into the data presented in your chart. You can click through to find exactly the number you need, and zoom in to get closer to the information around a certain period of time, or vice versa.

Creating dashboards

Business intelligence dashboards help you monitor the outcome of your actions so that you can make informed decisions about the further development of your company or product.

Dashboards are visually similar to charts. However, instead of focusing on a few specific elements, dashboards allow you to present an array of different types of information in different visual forms on one screen. This approach helps to monitor sensitive performance indicators on one screen. Metabase dashboard filters will help out on this task. And all the data in a dashboard will always be up to date.

B406930da47c1ae1259d65763de30917

In Metabase, you can find many ready-made dashboards for efficiently presenting different data collections. These dashboards are made by other Metabase users. And since they’re based on real-world scenarios, you’re likely to find something that closely fits your use case in no time.

Metabase API

There are many platforms out there that are great at what they do, but fail miserably when it comes to integrating with your environment.

That’s why Metabase comes with its own API for integrating its features into other products.

The API allows you to ask for any data that is passed through Metabase via a different application. You can also create custom queries and pass them into Metabase by means of the API.

Moreover, developers can use curl requests to set users, groups, and permissions; even generate reports.

You’ll find a ton of API use cases in the official Metabase documentation.

How does Metabase compare with similar top industry solutions?

Metabase is a great tool but it’s neither the first nor the only one of its kind.

There are many other business intelligence tools that help businesses collect and analyze data. But Metabase isn’t afraid of competition. In fact, in the next section, we’re putting Metabase toe-to-toe with some of the best, most powerful and most popular data analysis platforms.

Punches will fly, but you’ll find that Metabase puts up a strong show of force.

Metabase vs Tableau

These two platforms have a lot in common. Both were created for the purpose of presenting a large amount of data via the most visually comprehensive tools.

Tableau launched in 2003. By 2021 it had earned the trust and admiration of many businesses.

By comparison, Metabase is a relatively recent addition to the scene. While it doesn’t have the huge exposure and reputation that Tableau has built over the years, Metabase has the advantage of having been built on the lessons learned from other platforms (including Tableau).

You could say Metabase stands on the shoulders of giants, but reaches higher because of that.

Metabase vs Superset

Superset is a free alternative to Metabase. It is a quite popular tool made by developers of Airbnb and now belongs to Apache. It is open source too and in many cases functionally similar to Metabase.

People love Superset due to its easy migrating system. If you’re migrating to Superset, the process is painless and straightforward.

Superset users are particularly fond of a feature called “Time Dimensions”, which allows you to monitor data from several time segments without having to update the whole dashboard at the same time.

While it’s a brilliant tool, Superset suffers in the documentation department. This becomes a real problem when dealing with some of the more advanced or obscure functionality.

On the flip side, Metabase boasts clear and detailed documentation. More importantly, we’ve placed huge emphasis on UI/UX, to the extent that most functions can be performed without spending too much time digging through documentation. Metabase’s easy query system and intuitive charts and dashboards have won over many users from Superset, simply because they were tired of all the guesswork.

Metabase vs Redash

One of Redash's main claims to fame is that it supports JSON files as a data source. In other words, it can be connected to NoSQL databases like MongoDB, which many users consider an asset.

Metabase and Redash also have a number of useful features in common, such as the “Query Snippet” function, which helps to create reusable bits of SQL queries to quickly recreate requests to the database.

In Redash it is easy to set up query parameters. Therefore, it is simpler to pass the arguments and data sources into SQL and NoSQL requests.

Unfortunately, Redash falls short when it comes to the visual element of the applications. In a side-by-side comparison, you’ll see that Metabase’s charts and dashboards are much better presented and more informative (hence, more useful) than the ones that Redash provides.

Metabase vs Looker

True to its name, Looker is a very well-presented tool that is loved by thousands of users. Its main focus is data modeling and it is actually good at it.

Metabase is also very good at data modeling. In fact, Looker and Metabase have a lot of strong points in common. Where Metabase outclasses Looker, is in performance. Put the two head-to-head and you’ll find Metabase much faster and more comfortable to use.

Many Looker users love it because of its LookML language — a proprietary syntax that is used to pass queries to databases. It has quite a steep learning curve, but many businesses consider it to be the most powerful and efficient way to work with a large amount of information. Unfortunately, it’s also pretty expensive.

By comparison, Metabase is free as long as you host it yourself, and still brings very powerful features bundled with a well-designed UI/UX.

Metabase vs Power BI

Power BI is Microsoft's business intelligence tool, created for those who primarily work within Microsoft’s ecosystem.

It is a feature-rich and massive product, but its power comes with an equally steep learning curve. As a result, the product is very hard to penetrate, which means that most users will rarely be able to get the full benefit of its powerful features. Just getting Power BI up and running is a mammoth of a task, requiring a considerable investment in time, effort and money to get it to work efficiently.

Just like many other Microsoft products, Power BI has its niche of users for whom it's an excellent fit. But it’s definitely not for everyone.

On the flip side, Metabase was designed with a very low barrier to entry. The intuitive UI makes it easy to deploy and start using within minutes. And of course, it’s not lacking in powerful features either.

The best way to try out Metabase

Metabase is a powerful tool that will dramatically change the way you work with databases. But you shouldn’t take our word for it. That’s why we recommend that you try out Metabase for yourself and come to your own conclusions.

How do you do that?

With Hostman.

As part of its suite of hosting services, Hostman has just launched a Marketplace where administrators and developers can find a variety of tools such as OpenVPN, Docker, Metabase and many more, which can be deployed in one click.

All you have to do is:

  1. Visit the Metabase page in the Hostman Marketplace.

  2. Click “Deploy to Hostman”.

2e10fe0e3f95b43baad7c0ac74b9ade4

Nothing else is necessary.

You won’t need to download Java and JAR files, or create Docker containers. Everything will be set up for you. 

The Hostman Marketplace also carries loads of other exceptional tools that you can easily deploy and use. You can try any of them for free for 7 days. And if you like what you see, you can continue to use it for just 5 dollars per month.

Infrastructure

Similar

Infrastructure

Hybrid Cloud Computing: Architecture, Benefits, and Use Cases

A hybrid cloud is an infrastructure model that combines private and public cloud services. Private clouds are owned by the company, while public clouds rely on provider resources, such as Amazon Web Services (AWS), Microsoft Azure, or Hostman. Hybrid Cloud Architecture The architecture of a hybrid cloud consists of the company’s own data center, external resources, and private hosting. These components are connected through a unified management process. The key feature of the hybrid approach is the ability to connect systems that handle business-critical data, which cannot be placed on public infrastructure, while still leveraging the advantages of external hosting, such as on-demand scaling. Hybrid Cloud Advantages Hybrid cloud addresses the limitations of both public and private cloud services. It is a compromise solution with several important benefits: Reduced computing costs compared to relying solely on in-house hardware. Flexible management: critical data can remain on private infrastructure, while less sensitive workloads can be handled by the provider. Easy scalability by using resources offered by cloud providers. Disadvantages Some drawbacks of hybrid cloud include: Integration complexity: establishing a reliable connection between private and public environments can be challenging. Risk of failure: if resources are poorly distributed or one segment fails, the entire system may be affected. Oversubscription: some providers may allocate the same resources to multiple clients. Such issues can be avoided by carefully selecting a provider. For instance, when configuring a hybrid cloud on Hostman, you can rely on expert support and guaranteed access to the resources you pay for. Use Cases Here are several examples of situations where hybrid cloud infrastructure is particularly useful: Rapid Project Scaling Suppose you run an online store. During high-traffic events like Black Friday, website traffic spikes dramatically. Cloud architecture reduces the risk of server crashes during peak loads. Additional resources can be deployed in the cloud as needed and removed once demand decreases, preventing unnecessary costs. Scalability is also crucial for big data processing. Using cloud resources is more cost-effective than maintaining a large in-house data center. Data Segregation Confidential client information can be stored in a private cloud, while corporate applications run on public cloud infrastructure. Public hosting is also suitable for storing backup copies, ensuring business continuity if the primary system encounters problems. Development and Testing External cloud resources can be used for deployment and testing, allowing teams to simulate workloads and identify bugs not visible in local environments. After validation, the new version can be deployed to the main infrastructure. Conclusion Hybrid cloud is a practical approach for companies that value flexibility and aim for rapid growth. It combines the advantages of private and public hosting, enabling multiple use cases, from quickly deploying additional resources to securely storing sensitive data and testing new products.
21 October 2025 · 3 min to read
Infrastructure

Hypervisor: Types, Examples, Security, Comparison

A hypervisor is a process that helps separate the operating system and running applications from the hardware component. This typically refers to specialized software. However, embedded hypervisors also exist. These are available from the start, rather than being launched after system deployment. The hypervisor is what enables the development of the virtualization concept. Hardware virtualization is the ability to manage multiple virtual machines (VMs) on a single device. They become guest systems. An example of virtualization in use is renting a virtual server from a hosting provider. Multiple isolated spaces are located on one device. Different software can be installed on them. This increases resource utilization efficiency. Memory, computing power, and bandwidth are distributed among virtual servers rather than sitting idle waiting for load. Virtualization is not limited to servers. Storage hypervisors use it for data storage. They run on physical hardware as VMs, within the system, or in another storage network. Hypervisors also help virtualize desktops and individual applications. History of the Hypervisor Virtualization began being used in the 1960s. For the most part, the virtualization environment was applied to IBM mainframes. Developers used it to test ideas and to study and refine hardware concepts. This made it possible to deploy systems and fix errors without threats to the stability of the primary equipment. At the beginning of the new millennium, virtualization received a powerful boost thanks to widespread adoption in Unix family operating systems. There were several reasons for mass distribution: Server hardware capabilities improved. Architecture refinement led to increased reliability and security. Developers began implementing hardware virtualization on processors based on x86 architecture. This led to mass adoption. Since then, virtualization systems have been used not only for solving complex engineering tasks, but also for simple resource sharing and even home entertainment. In recent years, virtualization has expanded beyond x86 to ARM-based processors, with solutions like Apple's Virtualization framework and AWS Graviton instances becoming increasingly common. Advantages of Hypervisors Although virtual machines run on a single device, logical boundaries are built between them. This isolation protects against threats. If one virtual machine fails, others continue to operate. Another huge advantage is mobility. VMs are independent of hardware. Want to migrate an environment to another server? No problem. Need to deploy a VM on a local computer? Also a simple task. Less connection to hardware means fewer dependencies. Finally, resource savings. A hosting provider manages equipment more rationally by providing one physical server to multiple clients. Machines don't sit idle, but bring benefit with all their capabilities. Clients don't overpay for physical equipment while simultaneously gaining the ability to scale quickly and conveniently if such a need arises. Types of Hypervisors There are two types of hypervisors, concisely named Type 1 and Type 2. TYPE 1: bare-metal hypervisors. They run on the computer's hardware. From there, they manage the equipment and guest systems. This type of virtualization is offered by Xen, Microsoft Hyper-V, Oracle VM Server, and VMware ESXi. Modern cloud providers also use specialized Type 1 hypervisors like AWS Nitro and KVM-based solutions. TYPE 2: hosted hypervisors. They operate within the system as regular programs. Virtual systems in this case appear in the main system as processes. Examples include VirtualBox, VMware Workstation, VMware Player, and Parallels Desktop. To increase the stability, security, and performance of hypervisors, developers combine features of both types, creating hybrid solutions. They work both on "bare metal" and using the host's main system. Examples include recent versions of Xen and Hyper-V. The boundaries between bare-metal and hosted hypervisors are gradually blurring. However, it's still possible to determine the type. Though there's usually no practical need for this. Hypervisor Comparison Virtualization types are not the only difference. Hypervisors solve different tasks, have different hardware requirements, and have licensing peculiarities. Hyper-V A free hypervisor for servers running Windows OS. Its features: No graphical interface; configuration and debugging must be done in the console. Licenses must be purchased for all VMs running Windows. No technical support, although updates are released regularly. Hyper-V uses encryption to protect virtual machines and also allows reducing and expanding disk space. Among the disadvantages: there's no USB Redirection needed for connecting USB devices to virtual hosts. Instead, Discrete Device Assignment is used, which is not a complete replacement. VMware VMware is a virtualization technology created by the American company of the same name. It's used to organize virtual server operations. In 2024, Broadcom acquired VMware and introduced significant changes to licensing models and product portfolios, shifting focus toward larger enterprise customers. Many know about ESXi, a hardware hypervisor built on a lightweight Linux kernel called VMkernel. It contains all the necessary virtualization tools. A license must be purchased for each physical processor to operate. The amount of RAM and how many virtual machines you plan to run on your equipment doesn't matter. Note that under Broadcom's ownership, licensing models have evolved, with many standalone products being bundled into subscription packages. VMware has free virtualization tools. However, their capabilities are insufficient for professional use. For example, the API works in read-only mode, and the number of vCPUs must not exceed eight. Additionally, there are no backup management tools.  VMware Workstation The VMware Workstation hypervisor was created in 1999. Now it's a virtualization tool for x86-64 computers with Windows and Linux. The hypervisor supports over two hundred guest operating systems. VMware Hypervisor has a free version with reduced functionality, typically used for familiarization and testing. In 2024, Broadcom made VMware Workstation Pro free for personal use, making it more accessible to individual users and developers. KVM An open-source tool designed for Linux/x86-based servers. Intel-VT and AMD-V extensions are also supported, and ARM virtualization extensions are increasingly common. The KVM hypervisor is quite popular. It's used in many network projects: financial services, transportation systems, and even in the government sector. KVM is integrated into the Linux kernel, so it runs quickly. Major cloud providers use KVM as the foundation for their virtualization infrastructure. However, some disadvantages remain. Built-in services are not comparable in functionality to other hypervisors' solutions. To add capabilities, third-party solutions must be used, such as SolusVM or more modern management platforms like Proxmox VE. KVM is being refined by a community of independent developers, so gradually there are fewer shortcomings in its operation. The quality of the hypervisor is confirmed by hosting providers who choose it for virtualization on their equipment. Xen Xen is a cross-platform hypervisor solution that supports hardware virtualization and paravirtualization. It features minimal code volume. Modules are used to expand functionality. Open source code allows any specialist to modify Xen for their needs. Oracle VM VirtualBox Oracle VM VirtualBox is a cross-platform hypervisor for Windows, Linux, macOS, and other systems.  It is one of the most popular hypervisors, especially in the mass market segment. This is partly because VM VirtualBox has open source code. The program is distributed under the GNU GPL license. A distinctive feature: VirtualBox offers broad compatibility across different host and guest operating system combinations, making it ideal for development and testing environments. Hypervisors vs. Containers Hypervisors are often contrasted with containers. They allow deploying a greater number of applications on a single device. You already know what a hypervisor is and how it works. The problem is that VMs consume many resources. To operate, you need to make a copy of the operating system, plus a complete copy of the equipment for this system to function. If you allocate a nominal 4 GB of RAM to a VM, then the main device will have 4 GB less RAM. Unlike VMs, a container only uses the operating system's resources. It also needs power to run a specific application. But much less is required than to run an entire OS. However, containers cannot completely replace VMs. This is partly due to the increased risk of losing all data. Containers are located inside the operating system. If the host is attacked, all containers can be damaged or lost. A virtualization server creates multiple virtual machines. They don't interact with each other; there are clear boundaries between them. If one machine is attacked, the others remain safe. Along with all their contents. In modern infrastructure, containers and VMs are often used together. Container orchestration platforms like Kubernetes typically run on virtual machines, combining the isolation benefits of VMs with the efficiency of containers. This hybrid approach has become the standard for cloud-native applications. Security Issues Hypervisors are more secure than containers. However, they still have problems. Theoretically, it's possible to create a rootkit and malicious application that installs itself disguised as a hypervisor. Such a hack is called hyperjacking. It's difficult to detect. Protection doesn't trigger because the malicious software is already installed and intercepts system actions. The system continues to work, and the user doesn't even suspect there are problems. To protect the system from rootkits, specialists are developing various approaches that protect it without negatively affecting performance. Modern processors include hardware-based security features like Intel TXT and AMD Secure Encrypted Virtualization to help prevent hypervisor-level attacks. How to Choose a Hypervisor The choice is vast: VMware or VirtualBox, Hyper-V or KVM. There's one universal recommendation: focus on the tasks. If you need to test an operating system in a virtual machine on a home computer, VirtualBox will suffice. If you're looking for a solution to organize a corporate-level server network, then the focus shifts toward VMware tools (keeping in mind recent licensing changes), KVM-based solutions like Proxmox, or cloud-native options. For cloud deployments, consider managed hypervisor solutions from providers like Hostman, AWS, Azure, or Google Cloud, which abstract away much of the complexity while providing enterprise-grade performance and security.
20 October 2025 · 9 min to read
Infrastructure

Information Security (InfoSec): Definition, Principles Triad, and Threats

Information security refers to various methods of protecting information from outsiders. That is, from everyone who should not have access to it. For example, a marketer typically has no reason to view the company's financial statements, and an accountant doesn't need to see internal documents from the development department. Before the era of universal digitization, it was mainly paper documents that needed protection. They were hidden in safes, secret messages were encrypted, and information was transmitted through trusted people. Today, computer security is the foundation of any business. InfoSec Principles Information security protection is based on three principles: availability, integrity, and confidentiality. Confidentiality: data is received only by those who have the right to it. For example, application mockups are stored in Figma, with access limited to designers and the product manager. Integrity: data is stored in full and is not changed without permission from authorized persons. Suppose there's code in a private repository. If an unauthorized person gains access to the repository and deletes part of the project, this violates integrity. Availability: if an employee has the right to access information, they receive it. For example, every employee can access their email. But if the email service is attacked and made unavailable, employees won't be able to use it. Adhering to these principles helps achieve the goal of information security: to reduce the likelihood of or eliminate unauthorized access, modification, distribution, and deletion of data.  Many companies also adopt a zero-trust security approach that assumes no user or system should be trusted by default. This reinforces all three principles by requiring continuous verification. What Information Needs Protection Understanding what data should be protected is what information security in a company depends on. Information can be publicly accessible or confidential. Publicly accessible: this data can be viewed by anyone. Confidential: available only to specific users. At first glance, it seems that information security measures don't apply to publicly accessible information, but this isn't true. Only the principle of confidentiality doesn't apply to it. Publicly accessible data must remain integral and, logically, available. For example, a user's page on a social network. It contains publicly accessible information. The social network ensures its availability and integrity. If the user hasn't changed privacy settings, anyone can view their page. But they cannot change anything on it. At the same time, the account owner can configure confidentiality, for instance, hide their friends, groups they're subscribed to, and musical interests. Confidential information also comes in different types. These can be: Personal user data. Trade secrets: information about how the company operates and what projects it conducts and how. Professional secrets, which must be kept by doctors, lawyers, notaries, and representatives of certain other professions. Official secrets: for example, pension fund data, tax inspection information, banking details. State secrets: intelligence information, data on economic conditions, foreign policy, science and technology. This is not an exhaustive list, but rather an attempt to show how much data needs information security measures applied to it. Possible Threats The enormous list of potential threats is usually divided into four types: Natural: for example, hurricanes or floods. Man-made: phenomena related to human activity. They can be unintentional (employee error) or intentional (hacker attack). Internal: threats that originate from within the system, such as from employees. External: threats that originate from other sources, such as attacks by competitors. With the mass adoption of remote work formats, the number of man-made threats, both external and internal, intentional and unintentional, has noticeably increased. Because of this, the workload on information security specialists has grown. Today's threat environment includes several increasingly prevalent attack vectors: Ransomware attacks: malicious software that encrypts company data and demands payment for its release. These attacks have become more sophisticated and targeted, often crippling entire organizations. Supply chain attacks: compromising software or hardware providers to gain access to their customers' systems. Attackers exploit trust relationships between organizations and their vendors. AI-powered threats: artificial intelligence is being used to create more convincing phishing campaigns, generate deepfakes for social engineering attacks, and automate vulnerability discovery. At the same time, AI is also being deployed defensively to detect and respond to threats faster. Social engineering and deepfakes: attackers use AI-generated audio and video to impersonate executives or trusted individuals, making fraudulent requests appear legitimate. Protection Measures Organizational information protection measures are implemented at several control levels. Administrative: the formation of standards, procedures, and protection principles. For example, developing a corporate security policy. At this level, it's important to understand what data you will protect and how. Logical: protection of access to software and information systems. At this control level, access rights are configured, passwords are set, and secure networks and firewalls are configured. Physical: at this level, physical infrastructure is controlled. This refers not only to access to equipment, but also to protection from fires, floods, and other emergency situations. Despite digitization, physical information protection remains no less important. Antivirus software and access rights separation won't help if attackers gain physical access to the server. They won't save you in case of an emergency either. To eliminate such problems, Hostman uses infrastructure in protected data centers.
20 October 2025 · 5 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support