Sign In
Sign In

How to Analyze Data with Metabase? A Comparison To 5 Most Popular Analytical Services

How to Analyze Data with Metabase? A Comparison To 5 Most Popular Analytical Services
Hostman Team
Technical writer
Infrastructure

What is Metabase? How to connect it to your database and use it for your analytics? What are the most popular Metabase alternatives and how do they compare? Read this article to find out everything about Metabase.

What is Metabase and how does it work?

Without the right tools, a database can be as impenetrable as a medieval dungeon crawling with carnivorous spiders.

But fear not, brave adventurer — Metabase is here to help you find and unlock all of the riches in your database.

With its intuitive UI, Metabase is your master key to accessing, presenting, and analyzing everything that lives inside your databases. Metabase is the open-source application that unlocks the full potential of your databases, allowing you to access, search, and share data in the easiest way possible. 

8302fb74d1bb041513710709c1280739

It is like having an intelligent, proactive and efficient digital analyst who’s always on the alert, and who can help you process and retrieve any of your data quickly and painlessly.

The simple and intuitive UI makes it possible to query even the tiniest piece of data in your database. More importantly, it presents the information in a clear and understandable way, so that you and your team can get the full benefit from the results of your query.

What makes Metabase such a popular tool?

I.T. professionals are known for their logical and analytical thinking. So when they get excited about something like Metabase, you can bet they have solid arguments to back it up.

Here are just a handful of features that have made Metabase the tool of choice for so many I.T. professionals:

  • Advanced query system that is equally effective with generic searches and laser-targeted database interrogations. Accessing data is as simple as asking a question about anything in your database. The Metabase query builder will serve up information you need in a way that is easy to digest for both analysts and non-technical users.

  • One-time-setup automated report generation. Metabase will automatically create reports about data changes in your database. Set it and forget it.

  • Intelligent tracking of important data changes with alerts. Set up alerts to keep owners up to date on changes in key data for which they are responsible.

  • Charts and dashboards that are as useful as they are visually appealing. With a strong focus on UI and UX, Metabase excels at presenting data and changes in a style that is clear and immediately understandable.

  • Craft dedicated embedded analytics. Metabase can also be used very effectively as a full-fledged data collector and manager for your clients.

How to set up Metabase

Before you can start working with Metabase, you need to follow a simple deployment and setup procedure.

Here’s everything you need to know.

Deploying

There are many ways to launch Metabase on your production platform.

The simplest way is to use cloud services that automated all the processes. All you need to do is to sign up to the service, select Metabase, and it will create an instance of the application on a fast and reliable server. Next, you will need to configure Metabase after the deployment is over.

Another way to install Metabase is to use the dedicated JAR file:

  1. Download the file from the official Metabase website

  2. Run the following command: java -jar metabase.jar

Alternatively, you can use the Docker image of Metabase If you’re used to working with containers.

There are also other methods for running Metabase. You can find them in the official Metabase documentation.

Setting up

Once you’ve set up Metabase on your server, you’ll be able to access it via localhost:3000.

Just open that address in your browser to begin.

Metabase will ask you to create an admin account. You’ll need to insert the standard personal details — name, last name, email, password, etc.

The next step is to connect your database. To do so, you’ll have to specify:

  • the hostname of the server with the database

  • the port to connect to the database

  • the database name

  • the username and password for accessing the database.

7806c717f1a993826008262ba6729ad6

And, that’s it. Once you’ve connected your database, you can check out the Metabase interface and start exploring all of its exciting functionality.

How to ask Metabase questions

Asking Questions is a key element of the Metabase system. It is like “queries on jet fuel” for your database software.

As an analyst, formulating the right Metabase Questions will be one of your main activities. They are the tool that will help you extract all of the important insights from the data you’re inspecting. While Metabase Questions are extremely powerful, creating them is an incredibly simple and intuitive process.

Let’s say you have a table with order data. It contains columns for subtotal, tax, total, etc., and you want to find all the orders with a tax of more than 5 dollars.

Using the filter system, you can ask Metabase to check the orders table for how many rows there are with a tax exceeding 5 dollars. To do this, you click on the Filter button, choose a column, choose the criteria to filter, and then click “Add filter”. Next, you might want to use the “Summarize” option to add up all of the rows with a tax of more than 5 dollars.

Filters in Metabase allow you to pick out the necessary data and get direct answers to your questions.

To help you get the most out of Metabase, we’ve prepared for you an in-depth Metabase query syntax tutorial.

How to visualize data

Presenting your data in a way that is appealing and easy to digest, is one of the key features of Metabase. All of the numbers, columns, rows, and cells are organized in a logical manner to facilitate understanding and data-driven decision-making.

Both visualization tools in Metabase are optimized for analyzing and monitoring any volume of data.

Creating charts

Metabase Charts depend heavily on the questions you ask. You can use built-in query editors to visualize data as charts.

To create a chart, you need to choose the “Visualize” option. Next, you’ll be able to choose one of the chart views that will present the data it gets from the question you ask. Finally, you will need to formulate the question.

55fafb6bf7e3b166b9efb717b7904afe

Let’s say you have an orders table with various categories of goods that your company sells. You can ask Metabase to filter some categories, summarize their performance characteristics and Visualize as a histogram.

Most importantly, you’ll be able to drill deeper into the data presented in your chart. You can click through to find exactly the number you need, and zoom in to get closer to the information around a certain period of time, or vice versa.

Creating dashboards

Business intelligence dashboards help you monitor the outcome of your actions so that you can make informed decisions about the further development of your company or product.

Dashboards are visually similar to charts. However, instead of focusing on a few specific elements, dashboards allow you to present an array of different types of information in different visual forms on one screen. This approach helps to monitor sensitive performance indicators on one screen. Metabase dashboard filters will help out on this task. And all the data in a dashboard will always be up to date.

B406930da47c1ae1259d65763de30917

In Metabase, you can find many ready-made dashboards for efficiently presenting different data collections. These dashboards are made by other Metabase users. And since they’re based on real-world scenarios, you’re likely to find something that closely fits your use case in no time.

Metabase API

There are many platforms out there that are great at what they do, but fail miserably when it comes to integrating with your environment.

That’s why Metabase comes with its own API for integrating its features into other products.

The API allows you to ask for any data that is passed through Metabase via a different application. You can also create custom queries and pass them into Metabase by means of the API.

Moreover, developers can use curl requests to set users, groups, and permissions; even generate reports.

You’ll find a ton of API use cases in the official Metabase documentation.

How does Metabase compare with similar top industry solutions?

Metabase is a great tool but it’s neither the first nor the only one of its kind.

There are many other business intelligence tools that help businesses collect and analyze data. But Metabase isn’t afraid of competition. In fact, in the next section, we’re putting Metabase toe-to-toe with some of the best, most powerful and most popular data analysis platforms.

Punches will fly, but you’ll find that Metabase puts up a strong show of force.

Metabase vs Tableau

These two platforms have a lot in common. Both were created for the purpose of presenting a large amount of data via the most visually comprehensive tools.

Tableau launched in 2003. By 2021 it had earned the trust and admiration of many businesses.

By comparison, Metabase is a relatively recent addition to the scene. While it doesn’t have the huge exposure and reputation that Tableau has built over the years, Metabase has the advantage of having been built on the lessons learned from other platforms (including Tableau).

You could say Metabase stands on the shoulders of giants, but reaches higher because of that.

Metabase vs Superset

Superset is a free alternative to Metabase. It is a quite popular tool made by developers of Airbnb and now belongs to Apache. It is open source too and in many cases functionally similar to Metabase.

People love Superset due to its easy migrating system. If you’re migrating to Superset, the process is painless and straightforward.

Superset users are particularly fond of a feature called “Time Dimensions”, which allows you to monitor data from several time segments without having to update the whole dashboard at the same time.

While it’s a brilliant tool, Superset suffers in the documentation department. This becomes a real problem when dealing with some of the more advanced or obscure functionality.

On the flip side, Metabase boasts clear and detailed documentation. More importantly, we’ve placed huge emphasis on UI/UX, to the extent that most functions can be performed without spending too much time digging through documentation. Metabase’s easy query system and intuitive charts and dashboards have won over many users from Superset, simply because they were tired of all the guesswork.

Metabase vs Redash

One of Redash's main claims to fame is that it supports JSON files as a data source. In other words, it can be connected to NoSQL databases like MongoDB, which many users consider an asset.

Metabase and Redash also have a number of useful features in common, such as the “Query Snippet” function, which helps to create reusable bits of SQL queries to quickly recreate requests to the database.

In Redash it is easy to set up query parameters. Therefore, it is simpler to pass the arguments and data sources into SQL and NoSQL requests.

Unfortunately, Redash falls short when it comes to the visual element of the applications. In a side-by-side comparison, you’ll see that Metabase’s charts and dashboards are much better presented and more informative (hence, more useful) than the ones that Redash provides.

Metabase vs Looker

True to its name, Looker is a very well-presented tool that is loved by thousands of users. Its main focus is data modeling and it is actually good at it.

Metabase is also very good at data modeling. In fact, Looker and Metabase have a lot of strong points in common. Where Metabase outclasses Looker, is in performance. Put the two head-to-head and you’ll find Metabase much faster and more comfortable to use.

Many Looker users love it because of its LookML language — a proprietary syntax that is used to pass queries to databases. It has quite a steep learning curve, but many businesses consider it to be the most powerful and efficient way to work with a large amount of information. Unfortunately, it’s also pretty expensive.

By comparison, Metabase is free as long as you host it yourself, and still brings very powerful features bundled with a well-designed UI/UX.

Metabase vs Power BI

Power BI is Microsoft's business intelligence tool, created for those who primarily work within Microsoft’s ecosystem.

It is a feature-rich and massive product, but its power comes with an equally steep learning curve. As a result, the product is very hard to penetrate, which means that most users will rarely be able to get the full benefit of its powerful features. Just getting Power BI up and running is a mammoth of a task, requiring a considerable investment in time, effort and money to get it to work efficiently.

Just like many other Microsoft products, Power BI has its niche of users for whom it's an excellent fit. But it’s definitely not for everyone.

On the flip side, Metabase was designed with a very low barrier to entry. The intuitive UI makes it easy to deploy and start using within minutes. And of course, it’s not lacking in powerful features either.

The best way to try out Metabase

Metabase is a powerful tool that will dramatically change the way you work with databases. But you shouldn’t take our word for it. That’s why we recommend that you try out Metabase for yourself and come to your own conclusions.

How do you do that?

With Hostman.

As part of its suite of hosting services, Hostman has just launched a Marketplace where administrators and developers can find a variety of tools such as OpenVPN, Docker, Metabase and many more, which can be deployed in one click.

All you have to do is:

  1. Visit the Metabase page in the Hostman Marketplace.

  2. Click “Deploy to Hostman”.

2e10fe0e3f95b43baad7c0ac74b9ade4

Nothing else is necessary.

You won’t need to download Java and JAR files, or create Docker containers. Everything will be set up for you. 

The Hostman Marketplace also carries loads of other exceptional tools that you can easily deploy and use. You can try any of them for free for 7 days. And if you like what you see, you can continue to use it for just 5 dollars per month.

Infrastructure

Similar

Infrastructure

Apache Kafka and Real-Time Data Stream Processing

Apache Kafka is a high-performance server-based message broker capable of processing enormous volumes of events, measured in millions per second. Kafka's distinctive features include exceptional fault tolerance, the ability to store data for extended periods, and ease of infrastructure expansion through the simple addition of new nodes. The project's development began within LinkedIn, and in 2011, it was transferred to the Apache Software Foundation. Today, Kafka is widely used by leading global companies to build scalable, reliable data transmission infrastructure and has become the de facto industry standard for stream processing. Kafka solves a key problem: ensuring stable transmission and processing of streaming data between services in real time. As a distributed broker, it operates on a cluster of servers that simultaneously receive, store, and process messages. This architecture allows Kafka to achieve high throughput, maintain operability during failures, and ensure minimal latency even with many connected data sources. It also supports data replication and load distribution across partitions, making the system extremely resilient and scalable. Kafka is written in Scala and Java but supports clients in numerous languages, including Python, Go, C#, JavaScript, and others, allowing integration into virtually any modern infrastructure and use in projects of varying complexity and focus. How the Technology Works To work effectively with Kafka, you first need to understand its structure and core concepts. The system's main logic relies on the following components: Messages: Information enters Kafka as individual events, each representing a message. Topics: All messages are grouped by topics. A topic is a logical category or queue that unites data by a specific characteristic. Producers: These are programs or services that send messages to a specific topic. Producers are responsible for generating and transmitting data into the Kafka system. Consumers: Components that connect to a specific topic and extract published messages. To improve efficiency, consumers are often organized into consumer groups, thereby distributing the load among different instances and allowing better management of parallel processing of large data volumes. This division significantly improves overall system performance and reliability. Partitions: Any topic can be divided into partitions, enabling horizontal system scaling and increased performance. Brokers: Servers united in a Kafka cluster perform functions of storing, processing, and managing messages. The component interaction process looks as follows: The producer sends a message to a specified topic. The message is added to the end of one of the topic's partitions and receives its sequential number (offset). A consumer belonging to a specific group subscribes to the topic and reads messages from partitions assigned to it, starting from the required offset. Each consumer independently manages its offset, allowing messages to be re-read when necessary. Thus, Kafka acts as a powerful message delivery mechanism, ensuring high throughput, reliability, and fault tolerance. Since Kafka stores data as a distributed log, messages remain available for re-reading, unlike many queue-oriented systems. Key Principles Append-only log: messages are not modified/deleted (by default), they are simply added. This simplifies storage and replay. Partition division for speed: one topic is split into parts, and Kafka can process them in parallel. Thanks to this, it scales easily. Guaranteed order within partition: consumers read messages in the order they were written to the partition. However, there is no complete global ordering across the entire topic if there are multiple partitions. Messages can be re-read: a consumer can "rewind" at any time and re-read needed data if it's still stored in Kafka. Stable cluster operation: Kafka functions as a collection of servers capable of automatically redirecting load to backup nodes in case of broker failure. Why Major Companies Choose Apache Kafka There are several key reasons why large organizations choose Kafka: Scalability Kafka easily handles large data streams without losing performance. Thanks to the distributed architecture and message replication support, the system can be expanded simply by adding new brokers to the cluster. High Performance The system can process millions of messages per second even under high load. This level of performance is achieved through asynchronous data sending by producers and efficient reading mechanisms by consumers. Reliability and Resilience Message replication among multiple brokers ensures data safety even when part of the infrastructure fails. Messages are stored sequentially on disk for extended periods, minimizing the risk of their loss. Log Model and Data Replay Capability Unlike standard message queues where data disappears after reading, Kafka stores messages for the required period and allows their repeated reading. Ecosystem Support and Maturity Kafka has a broad ecosystem: it supports connectors (Kafka Connect), stream processing (Kafka Streams), and integrations with analytical and Big Data systems. Open Source Kafka is distributed under the free Apache license. This provides numerous advantages: a huge amount of official and unofficial documentation, tutorials, and reviews; a large number of third-party extensions and patches improving basic functionality; and the ability to flexibly adapt the system to specific project needs. Why Use Apache Kafka? Kafka is used where real-time data processing is necessary. The platform enables development of resilient and easily scalable architectures that efficiently process large volumes of information and maintain stable operation even under significant loads. Stream Data Processing When an application produces a large volume of messages in real time, Kafka ensures optimal management of such streams. The platform guarantees strict message delivery sequence and the ability to reprocess them, which is a key factor for implementing complex business processes. System Integration For connecting multiple heterogeneous services and applications, Kafka serves as a universal intermediary, allowing data transmission between them. This simplifies building microservice architecture, where each component can independently work with event streams while remaining synchronized with others. Data Collection and Transmission for Monitoring Kafka enables centralized collection of logs, metrics, and events from various sources, which are then analyzed by monitoring and visualization tools. This facilitates problem detection, system state control, and real-time reporting. Real-Time Data Processing Through integration with stream analytics systems (such as Spark, Flink, Kafka Streams), Kafka enables creation of solutions for operational analysis and rapid response to incoming data. This allows for timely informed decision-making, formation of interactive monitoring dashboards, and instant response to emerging events, which is critically important for applications in finance, marketing, and Internet of Things (IoT). Real-Time Data Analysis Through interaction with stream analytics tools (for example, Spark, Flink, Kafka Streams), Kafka becomes the foundation for developing solutions ensuring fast processing and analysis of incoming data. This functionality enables timely important management decisions, visualization of indicators in convenient interactive dashboards, and instant response to changing situations, which is extremely relevant for financial sector companies, marketers, and IoT solution developers. Use Case Examples Here are several possible application scenarios: Web platforms: any user action (view, click, like) is sent to Kafka, and then these events are processed by analytics, recommendation system, or notification service. Fintech: a transaction creates a "payment completed" event, which the anti-fraud service immediately receives. If suspicious, it can initiate a block and pass data further. IoT devices: thousands of sensors send readings (temperature, humidity) to Kafka, where they are processed by streaming algorithms (for example, for anomaly detection), and then notifications are sent to operators. Microservices: services exchange events ("order created," "item packed," etc.) through Kafka without calling each other directly. Log aggregation: multiple services send logs to Kafka, from where analytics systems, SIEM, or centralized processing systems retrieve them. Logistics: tracking delivery statuses or real-time route distribution. Advertising: collection and analysis of user events for personalization and marketing analytics. These examples demonstrate Kafka's flexibility and its application in various areas. When Kafka Is Not Suitable It's important to understand the limitations and situations when Kafka is not the optimal choice. Several points: If the data volume is small (for example, several thousand messages per day) and the system is simple, implementing Kafka may be excessive. For low traffic, simple queues like RabbitMQ are better. If you need to make complex queries with table joins, aggregations, or store data for very long periods with arbitrary access, it's better to use a regular database. If full ACID transactions are important (for example, for banking operations with guaranteed integrity and relationships between tables), Kafka doesn't replace a regular database. If data hardly changes and doesn't need to be quickly transmitted between systems, Kafka will be excessive. Simple storage in a database or file may be sufficient. Kafka's Differences from Traditional Databases Traditional databases (SQL and NoSQL) are oriented toward storing structured information and performing fast retrieval operations. Their architecture is optimized for reliable data storage and efficient extraction of specific records on demand. In turn, Kafka is designed to solve different tasks: Working with streaming data: Kafka focuses on managing continuous data streams, while traditional database management systems are designed primarily for processing static information arrays. Parallelism and scaling: Kafka scales horizontally through partitions and brokers, and is designed for very large stream data volumes. Databases (especially relational) often scale vertically or with horizontal scaling limitations. Ordering and stream: Kafka guarantees order within a partition and allows subscribers to read from different positions, jump back, and replay. Latency and throughput: Kafka is designed to provide minimal delays while simultaneously processing enormous volumes of events. Example Simple Python Application for Working with Kafka If Kafka is not yet installed, the easiest way to "experiment" with it is to install it via Docker. For this, it's sufficient to create a docker-compose.yml file with minimal configuration: version: "3" services: broker: image: apache/kafka:latest container_name: broker ports: - "9092:9092" environment: KAFKA_NODE_ID: 1 KAFKA_PROCESS_ROLES: broker,controller KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092,CONTROLLER://0.0.0.0:9093 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092 KAFKA_CONTROLLER_LISTENER_NAMES: CONTROLLER KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT KAFKA_CONTROLLER_QUORUM_VOTERS: 1@localhost:9093 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1 KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1 KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1 KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0 KAFKA_NUM_PARTITIONS: 3 Run: docker compose up -d Running Kafka in the Cloud In addition to local deployment via Docker, Kafka can be run in the cloud. This eliminates unnecessary complexity and saves time. In Hostman, you can create a ready Kafka instance in just a few minutes: simply choose the region and configuration, and the installation and setup happen automatically. The cloud platform provides high performance, stability, and technical support, so you can focus on development and growth of your project without being distracted by infrastructure. Try Hostman and experience the convenience of working with reliable and fast cloud hosting. Python Scripts for Demonstration Below are examples of Producer and Consumer in Python (using the kafka-python library), the first script writes messages to a topic and the other reads. First, install the Python library: pip install kafka-python producer.py This code sends five messages to the test-topic theme. from kafka import KafkaProducer import json import time # Create Kafka producer and specify broker address # value_serializer converts Python objects to JSON bytes producer = KafkaProducer( bootstrap_servers="localhost:9092", value_serializer=lambda v: json.dumps(v).encode("utf-8"), ) # Send 5 messages in succession for i in range(5): data = {"Message": i} # Form data producer.send("test-topic", data) # Asynchronous send to Kafka print(f"Sent: {data}") # Log to console time.sleep(1) # Pause 1 second between sends # Wait for all messages to be sent producer.flush() consumer.py This Consumer reads messages from the theme, starting from the beginning. from kafka import KafkaConsumer import json # Create Kafka Consumer and subscribe to "test-topic" consumer = KafkaConsumer( "test-topic", # Topic we're listening to bootstrap_servers="localhost:9092", # Kafka broker address auto_offset_reset="earliest", # Read messages from the very beginning if no saved offset group_id="test-group", # Consumer group (for balancing) value_deserializer=lambda v: json.loads(v.decode("utf-8")), # Convert bytes back to JSON ) print("Waiting for messages...") # Infinite loop—listen to topic and process messages for message in consumer: print("Received:", message.value) # Output message content These two small scripts demonstrate basic operations with Kafka: publishing and receiving messages. Conclusion Apache Kafka is an effective tool for building architectures where key factors are event processing, streaming data, high performance, fault tolerance, and latency minimization. It is not a universal replacement for databases but excellently complements them in scenarios where classic solutions cannot cope. With proper architecture, Kafka enables building flexible, responsive systems. When choosing Kafka, it's important to evaluate requirements: data volume, speed, architecture, integrations, ability to manage the cluster. If the system is simple and loads are small—perhaps it's easier to choose a simpler tool. But if the load is large, events flow continuously, and a scalable solution is required, Kafka can become the foundation. Despite certain complexity in setup and maintenance, Kafka has proven its effectiveness in numerous large projects where high speed, reliability, and working with event streams are important.
08 December 2025 · 12 min to read
Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support