Sign In
Sign In

Top 7 VPN Services in 2022

Top 7 VPN Services in 2022
Hostman Team
Technical writer
Infrastructure

VPN (Virtual Private Network) is a special set of technologies that helps users around the world to visit websites that are blocked or not available in their country. But VPNs have many other uses. We will now discuss what a VPN really is, how it works, why you might want to use one and which VPN service to choose

What is VPN?

Imagine a standard connection to the internet. Without a VPN it looks like this:

  1. The user enters the website address.

  2. The server where the site is hosted accepts a request from the user with relevant data (IP, telemetry, etc.).

  3. The server returns all the data that the user wants to see (media content, articles and so on).

Such a connection is not all that secure and anyone who uses it is left vulnerable (with their data exposed to third parties). It won't a problem if we use protected networks (like WiFi at your house with a WPA-2 password), but when it's a public network everything changes and a user might stumble upon some unexpected problems. Even mediocre hackers can intercept the data that is passed through free public WiFi in cafes or domestic libraries. Sometimes they just visit web pages, at other times credit card data.

VPN is a set of tools that in combination provides users with mechanisms that help to minimize the risk of data leakage while still allowing people to use free public networks. The core of any VPN is the server — the remote computer between you and the internet. Before passing any request to the server of the visited website you pass it to the VPN server using an encrypted channel and then the VPN server passes data further into the web. The best thing is that a VPN server gives a website depersonalized data without your IP address and other stuff you probably want to keep hidden from third parties.

Of course, a VPN can be used as an instrument to override all the obstacles that can appear while you try to access Hulu or Pandora outside of the USA. Such functions are really useful in countries with no access to popular products like Spotify, HBO, Netflix or even Google. All you have to do is to rent a VPN server in the country where all these services are available. Nothing will prevent you from watching your favorite TV shows.

How to choose a VPN service?

The most reliable and secure way to use a VPN is to deploy your own virtual private network using special utilities on top of a remote PC hosted on the hardware of the company that you can trust (or even your own). It is not possible to implement everything by yourself without specific skills and knowledge which is why not all the users choose this method. Anyway, you don't have to be a hacker if you want to use a VPN because there are a lot of services that provide users with a pre-configured VPN that can be set up in a click.

If you still wish to set up your very own VPN, you can rent a reliable and functional server at hostman.com. It then can be used to install and configure all the software that is necessary to run an almost independent virtual private network.

Every TOP of VPN services is formed using a certain set of criteria. We recommend you to consider:

  • The provider. The company that rents you a remote PC with a pre configured VPN should be trustworthy. Actually, you give it your personal data and you must be extremely picky while choosing a VPN service. Avoid ones which have already been compromised (experienced data leakage or was selling too much information to ad running companies).

  • The price. You should understand that there's no such thing as a free lunch. Every VPN service must monetise their business somehow. That is why we recommend avoiding totally free services. It is highly likely that they sell your data or bombard you with a loads of ads.

  • Number of servers and "their habitat". There is a simple rule that you should follow when choosing a VPN — the more servers around the globe the service has the better. It makes it possible to overcome restrictions and guarantees a fast and stable connection in any part of the planet. The VPN becomes much more powerful because of this.

  • Used protocols. Protocols like PPTP and L2TP are considered outdated. You should avoid them. There are reliable and secure alternatives like OpenVPN and Wireguard. Pick them instead.
  • Privacy policy, user agreement and the way the service collects and stores your personal data. Many companies that provide users with VPNs collect some personal data. Before paying for the service you should read about how it deals with network logs. We also recommend finding out where the VPN service is registered. Depending on the origin of the VPN your data might be stored and processed differently.

  • Functionality. It is the must for the modern VPN service to have features like kill-switch or DNS-leakage protection.

Based on these criteria we created a TOP of free and paid VPN services.

VPN services

HMA

Official website: https://www.hidemyass.com

HMA VPN was created by Czech company Avast in 2005. The service itself quickly became notorious because of its aggressive marketing. But this one is popular not only because of the promotion it has received but because of its quickness. It is one of the fastest VPNs from the list of paid ones. The best feature of HMA — the tremendous number of servers around the world. There are some drawbacks, for example, because HMA works in an EU country it has to store user logs and nobody tries to hide this fact.

Features:

  • Monthly plan will cost you about 12 dollars (the annual one costs less).

  • 1100+ servers in 290 locations.

  • Servers that are really great for streaming and organizing P2P-connections.

  • Capability of using 5 devices in parallel.

  • But it is not anonymous. User logs are stored on the company's servers for three months (sometimes for more if your behavior is suspicious).

Astrill VPN

Official website: https://www.astrill.com/

This service was developed by Astrill System Corp, a company registered in the Seychelles. It has been going for 13 years now. This VPN allows you to use up to 5 devices simultaneously with one account. Astrill can be installed on all popular operating systems. The price may upset you but for this money you will get one of the fastest VPNs available on European servers. Lots of users love this service because of the Seychelles being an offshore jurisdiction. That means that Astrill doesn't have to follow all the strict laws of the EU and US. So you can be sure that nobody will demand user logs from this particular VPN.

Features:

  • The price of the monthly plan is 25 dollars.

  • Servers in 106 cities in 56 different countries.

  • The company is based in the Seychelles.

  • Special servers designed to work with YouTube, Netflix and Twitch.

  • Some servers have restrictions that stop users working with torrent trackers and other P2P software.

  • Logs are not stored but information about the last 20 connections is still saved.

  • There is support for third-party DNS-servers.

Cyber Ghost

Official website: https://www.cybergohstvpn.com

A service created by a Romanian provider in 2011. There is a standard list of advantages that you would expect from a good VPN. It allows you to use up to 5 devices simultaneously and doesn't cost that much. Even though the company itself must follow EU rules it promises not to store any logs (it is up to you to believe them or not but we think it is a bit suspicious). Along with the service application you will get a function for blocking ad services and malware.

Features:

  • A decent price (12 euro per month).

  • 1300+ servers around the globe.

  • Additional privacy services that block third-party connections and protect devices from malware and viruses.

  • Servers from the US might not be suitable for working with torrent trackers.

  • Cyber Ghost offers its own DNS-servers.

  • Every instance of CyberGhost applications can be used with a separate VPN server.

  • Flexible features.

  • Mediocre bandwidth is about 50-60 Mbps.

Nord VPN

Official website: https://nordvpn.com/

This VPN service is juridically located in an offshore zone (in Panama to be exact), that's why many users call it secure (no harsh laws requiring the storage of user logs there). Nord VPN has worked for more than 14 years. It allows you to connect up to 6 devices simultaneously. The best part of this service is an extremely low ping (latency of the signal from servers). For this reason NordVPN is loved among gamers. And that is not all. There are features like double VPN (hiding two connection points at once), capability of connecting to the TOR network through the VPN, dedicated IP address, DDoS-protection.

Features:

  • Monthly plan costs 10 euros.

  • The download speed on European servers is about 65 Mbps.

  • Nord VPN works with OpenVPN protocol by default but you can configure another protocol if you wish to.

  • Noticeably low latency of signal.

  • A lot of additional features that can't be covered in this article.

PrivateVPN

Official website: https://privatevpn.com

Private VPN was developed by Swedish developers in 2009. It is easy to describe PrivateVPN in a few words: it is fast, it allows you to use P2P and torrent trackers and offers special servers exclusively for streaming. The company itself is registered in the EU so you know where your data is stored. To mention something specific we should highlight the opportunity to forward the dedicated port for torrent trackers right inside the PrivateVPN application.

  • Monthly plan will cost you 8.5 euros.

  • The speed of data transferring varies but usually sits around 65-70 Mbps.

  • The ping is quite low (less than 2ms).

  • PrivateVPN has its own dedicated DNS-server.

  • Not so many servers. About 200 in 63 locations. This leads to some problems with connectivity and speed in rush hours (servers might be overloaded).

HideME

VPN provider from Malaysia that established its business in 2012. There's a classic set of features you would expect from such services. For instance, an ability to connect up to 5 devices to one account. The developer of HideMe itself says that the idea of the service is to provide excellent speed without any sacrifices to privacy. Logs are stored but only till you drop the connection. There are more specific features like randomizing ports at every connection. Users trust HideMe and call it one of the most secure and trusted VPNs out there.

Features:

  1. Fast connection (up to 250 Mbps on servers located in Great Britain).

  2. The plan costs aorund 10 euros.

  3. HideMe can offer its own DNS servers.

  4. Ping in EU servers is less than 2ms.

  5. But what is really great is that HideMe offers a great free plan (10 Gb traffic limit, only 5 locations, 1 connection at the moment).

ProtonVPN

Official website: https://protonvpn.com

Proton VPN can be described with two words: Swiss reliability. This product is made by the company which has developed one of the most secure and trusted email platforms. ProtonVPN can boast of a large selection of plans. There's a free one that comes with unlimited connection to 50 different servers in 3 countries. The main advantage of ProtonVPN — location. This company was established in Switzerland where extremely strict laws keep users' personal data protected from third parties.

Features:

  • Quite a large set of plans (from a free one to one that costs 24 euro per month).

  • Located in Switzerland.

  • The speed is about 80 Mbps on European servers.

  • An opportunity to pass the traffic through Tor network.

  • All the data passed through ProtonVPN is always forwarded between many servers before it goes right to the service you want to use while staying anonymous.

Infrastructure

Similar

Infrastructure

Hybrid Cloud Computing: Architecture, Benefits, and Use Cases

A hybrid cloud is an infrastructure model that combines private and public cloud services. Private clouds are owned by the company, while public clouds rely on provider resources, such as Amazon Web Services (AWS), Microsoft Azure, or Hostman. Hybrid Cloud Architecture The architecture of a hybrid cloud consists of the company’s own data center, external resources, and private hosting. These components are connected through a unified management process. The key feature of the hybrid approach is the ability to connect systems that handle business-critical data, which cannot be placed on public infrastructure, while still leveraging the advantages of external hosting, such as on-demand scaling. Hybrid Cloud Advantages Hybrid cloud addresses the limitations of both public and private cloud services. It is a compromise solution with several important benefits: Reduced computing costs compared to relying solely on in-house hardware. Flexible management: critical data can remain on private infrastructure, while less sensitive workloads can be handled by the provider. Easy scalability by using resources offered by cloud providers. Disadvantages Some drawbacks of hybrid cloud include: Integration complexity: establishing a reliable connection between private and public environments can be challenging. Risk of failure: if resources are poorly distributed or one segment fails, the entire system may be affected. Oversubscription: some providers may allocate the same resources to multiple clients. Such issues can be avoided by carefully selecting a provider. For instance, when configuring a hybrid cloud on Hostman, you can rely on expert support and guaranteed access to the resources you pay for. Use Cases Here are several examples of situations where hybrid cloud infrastructure is particularly useful: Rapid Project Scaling Suppose you run an online store. During high-traffic events like Black Friday, website traffic spikes dramatically. Cloud architecture reduces the risk of server crashes during peak loads. Additional resources can be deployed in the cloud as needed and removed once demand decreases, preventing unnecessary costs. Scalability is also crucial for big data processing. Using cloud resources is more cost-effective than maintaining a large in-house data center. Data Segregation Confidential client information can be stored in a private cloud, while corporate applications run on public cloud infrastructure. Public hosting is also suitable for storing backup copies, ensuring business continuity if the primary system encounters problems. Development and Testing External cloud resources can be used for deployment and testing, allowing teams to simulate workloads and identify bugs not visible in local environments. After validation, the new version can be deployed to the main infrastructure. Conclusion Hybrid cloud is a practical approach for companies that value flexibility and aim for rapid growth. It combines the advantages of private and public hosting, enabling multiple use cases, from quickly deploying additional resources to securely storing sensitive data and testing new products.
21 October 2025 · 3 min to read
Infrastructure

Hypervisor: Types, Examples, Security, Comparison

A hypervisor is a process that helps separate the operating system and running applications from the hardware component. This typically refers to specialized software. However, embedded hypervisors also exist. These are available from the start, rather than being launched after system deployment. The hypervisor is what enables the development of the virtualization concept. Hardware virtualization is the ability to manage multiple virtual machines (VMs) on a single device. They become guest systems. An example of virtualization in use is renting a virtual server from a hosting provider. Multiple isolated spaces are located on one device. Different software can be installed on them. This increases resource utilization efficiency. Memory, computing power, and bandwidth are distributed among virtual servers rather than sitting idle waiting for load. Virtualization is not limited to servers. Storage hypervisors use it for data storage. They run on physical hardware as VMs, within the system, or in another storage network. Hypervisors also help virtualize desktops and individual applications. History of the Hypervisor Virtualization began being used in the 1960s. For the most part, the virtualization environment was applied to IBM mainframes. Developers used it to test ideas and to study and refine hardware concepts. This made it possible to deploy systems and fix errors without threats to the stability of the primary equipment. At the beginning of the new millennium, virtualization received a powerful boost thanks to widespread adoption in Unix family operating systems. There were several reasons for mass distribution: Server hardware capabilities improved. Architecture refinement led to increased reliability and security. Developers began implementing hardware virtualization on processors based on x86 architecture. This led to mass adoption. Since then, virtualization systems have been used not only for solving complex engineering tasks, but also for simple resource sharing and even home entertainment. In recent years, virtualization has expanded beyond x86 to ARM-based processors, with solutions like Apple's Virtualization framework and AWS Graviton instances becoming increasingly common. Advantages of Hypervisors Although virtual machines run on a single device, logical boundaries are built between them. This isolation protects against threats. If one virtual machine fails, others continue to operate. Another huge advantage is mobility. VMs are independent of hardware. Want to migrate an environment to another server? No problem. Need to deploy a VM on a local computer? Also a simple task. Less connection to hardware means fewer dependencies. Finally, resource savings. A hosting provider manages equipment more rationally by providing one physical server to multiple clients. Machines don't sit idle, but bring benefit with all their capabilities. Clients don't overpay for physical equipment while simultaneously gaining the ability to scale quickly and conveniently if such a need arises. Types of Hypervisors There are two types of hypervisors, concisely named Type 1 and Type 2. TYPE 1: bare-metal hypervisors. They run on the computer's hardware. From there, they manage the equipment and guest systems. This type of virtualization is offered by Xen, Microsoft Hyper-V, Oracle VM Server, and VMware ESXi. Modern cloud providers also use specialized Type 1 hypervisors like AWS Nitro and KVM-based solutions. TYPE 2: hosted hypervisors. They operate within the system as regular programs. Virtual systems in this case appear in the main system as processes. Examples include VirtualBox, VMware Workstation, VMware Player, and Parallels Desktop. To increase the stability, security, and performance of hypervisors, developers combine features of both types, creating hybrid solutions. They work both on "bare metal" and using the host's main system. Examples include recent versions of Xen and Hyper-V. The boundaries between bare-metal and hosted hypervisors are gradually blurring. However, it's still possible to determine the type. Though there's usually no practical need for this. Hypervisor Comparison Virtualization types are not the only difference. Hypervisors solve different tasks, have different hardware requirements, and have licensing peculiarities. Hyper-V A free hypervisor for servers running Windows OS. Its features: No graphical interface; configuration and debugging must be done in the console. Licenses must be purchased for all VMs running Windows. No technical support, although updates are released regularly. Hyper-V uses encryption to protect virtual machines and also allows reducing and expanding disk space. Among the disadvantages: there's no USB Redirection needed for connecting USB devices to virtual hosts. Instead, Discrete Device Assignment is used, which is not a complete replacement. VMware VMware is a virtualization technology created by the American company of the same name. It's used to organize virtual server operations. In 2024, Broadcom acquired VMware and introduced significant changes to licensing models and product portfolios, shifting focus toward larger enterprise customers. Many know about ESXi, a hardware hypervisor built on a lightweight Linux kernel called VMkernel. It contains all the necessary virtualization tools. A license must be purchased for each physical processor to operate. The amount of RAM and how many virtual machines you plan to run on your equipment doesn't matter. Note that under Broadcom's ownership, licensing models have evolved, with many standalone products being bundled into subscription packages. VMware has free virtualization tools. However, their capabilities are insufficient for professional use. For example, the API works in read-only mode, and the number of vCPUs must not exceed eight. Additionally, there are no backup management tools.  VMware Workstation The VMware Workstation hypervisor was created in 1999. Now it's a virtualization tool for x86-64 computers with Windows and Linux. The hypervisor supports over two hundred guest operating systems. VMware Hypervisor has a free version with reduced functionality, typically used for familiarization and testing. In 2024, Broadcom made VMware Workstation Pro free for personal use, making it more accessible to individual users and developers. KVM An open-source tool designed for Linux/x86-based servers. Intel-VT and AMD-V extensions are also supported, and ARM virtualization extensions are increasingly common. The KVM hypervisor is quite popular. It's used in many network projects: financial services, transportation systems, and even in the government sector. KVM is integrated into the Linux kernel, so it runs quickly. Major cloud providers use KVM as the foundation for their virtualization infrastructure. However, some disadvantages remain. Built-in services are not comparable in functionality to other hypervisors' solutions. To add capabilities, third-party solutions must be used, such as SolusVM or more modern management platforms like Proxmox VE. KVM is being refined by a community of independent developers, so gradually there are fewer shortcomings in its operation. The quality of the hypervisor is confirmed by hosting providers who choose it for virtualization on their equipment. Xen Xen is a cross-platform hypervisor solution that supports hardware virtualization and paravirtualization. It features minimal code volume. Modules are used to expand functionality. Open source code allows any specialist to modify Xen for their needs. Oracle VM VirtualBox Oracle VM VirtualBox is a cross-platform hypervisor for Windows, Linux, macOS, and other systems.  It is one of the most popular hypervisors, especially in the mass market segment. This is partly because VM VirtualBox has open source code. The program is distributed under the GNU GPL license. A distinctive feature: VirtualBox offers broad compatibility across different host and guest operating system combinations, making it ideal for development and testing environments. Hypervisors vs. Containers Hypervisors are often contrasted with containers. They allow deploying a greater number of applications on a single device. You already know what a hypervisor is and how it works. The problem is that VMs consume many resources. To operate, you need to make a copy of the operating system, plus a complete copy of the equipment for this system to function. If you allocate a nominal 4 GB of RAM to a VM, then the main device will have 4 GB less RAM. Unlike VMs, a container only uses the operating system's resources. It also needs power to run a specific application. But much less is required than to run an entire OS. However, containers cannot completely replace VMs. This is partly due to the increased risk of losing all data. Containers are located inside the operating system. If the host is attacked, all containers can be damaged or lost. A virtualization server creates multiple virtual machines. They don't interact with each other; there are clear boundaries between them. If one machine is attacked, the others remain safe. Along with all their contents. In modern infrastructure, containers and VMs are often used together. Container orchestration platforms like Kubernetes typically run on virtual machines, combining the isolation benefits of VMs with the efficiency of containers. This hybrid approach has become the standard for cloud-native applications. Security Issues Hypervisors are more secure than containers. However, they still have problems. Theoretically, it's possible to create a rootkit and malicious application that installs itself disguised as a hypervisor. Such a hack is called hyperjacking. It's difficult to detect. Protection doesn't trigger because the malicious software is already installed and intercepts system actions. The system continues to work, and the user doesn't even suspect there are problems. To protect the system from rootkits, specialists are developing various approaches that protect it without negatively affecting performance. Modern processors include hardware-based security features like Intel TXT and AMD Secure Encrypted Virtualization to help prevent hypervisor-level attacks. How to Choose a Hypervisor The choice is vast: VMware or VirtualBox, Hyper-V or KVM. There's one universal recommendation: focus on the tasks. If you need to test an operating system in a virtual machine on a home computer, VirtualBox will suffice. If you're looking for a solution to organize a corporate-level server network, then the focus shifts toward VMware tools (keeping in mind recent licensing changes), KVM-based solutions like Proxmox, or cloud-native options. For cloud deployments, consider managed hypervisor solutions from providers like Hostman, AWS, Azure, or Google Cloud, which abstract away much of the complexity while providing enterprise-grade performance and security.
20 October 2025 · 9 min to read
Infrastructure

Information Security (InfoSec): Definition, Principles Triad, and Threats

Information security refers to various methods of protecting information from outsiders. That is, from everyone who should not have access to it. For example, a marketer typically has no reason to view the company's financial statements, and an accountant doesn't need to see internal documents from the development department. Before the era of universal digitization, it was mainly paper documents that needed protection. They were hidden in safes, secret messages were encrypted, and information was transmitted through trusted people. Today, computer security is the foundation of any business. InfoSec Principles Information security protection is based on three principles: availability, integrity, and confidentiality. Confidentiality: data is received only by those who have the right to it. For example, application mockups are stored in Figma, with access limited to designers and the product manager. Integrity: data is stored in full and is not changed without permission from authorized persons. Suppose there's code in a private repository. If an unauthorized person gains access to the repository and deletes part of the project, this violates integrity. Availability: if an employee has the right to access information, they receive it. For example, every employee can access their email. But if the email service is attacked and made unavailable, employees won't be able to use it. Adhering to these principles helps achieve the goal of information security: to reduce the likelihood of or eliminate unauthorized access, modification, distribution, and deletion of data.  Many companies also adopt a zero-trust security approach that assumes no user or system should be trusted by default. This reinforces all three principles by requiring continuous verification. What Information Needs Protection Understanding what data should be protected is what information security in a company depends on. Information can be publicly accessible or confidential. Publicly accessible: this data can be viewed by anyone. Confidential: available only to specific users. At first glance, it seems that information security measures don't apply to publicly accessible information, but this isn't true. Only the principle of confidentiality doesn't apply to it. Publicly accessible data must remain integral and, logically, available. For example, a user's page on a social network. It contains publicly accessible information. The social network ensures its availability and integrity. If the user hasn't changed privacy settings, anyone can view their page. But they cannot change anything on it. At the same time, the account owner can configure confidentiality, for instance, hide their friends, groups they're subscribed to, and musical interests. Confidential information also comes in different types. These can be: Personal user data. Trade secrets: information about how the company operates and what projects it conducts and how. Professional secrets, which must be kept by doctors, lawyers, notaries, and representatives of certain other professions. Official secrets: for example, pension fund data, tax inspection information, banking details. State secrets: intelligence information, data on economic conditions, foreign policy, science and technology. This is not an exhaustive list, but rather an attempt to show how much data needs information security measures applied to it. Possible Threats The enormous list of potential threats is usually divided into four types: Natural: for example, hurricanes or floods. Man-made: phenomena related to human activity. They can be unintentional (employee error) or intentional (hacker attack). Internal: threats that originate from within the system, such as from employees. External: threats that originate from other sources, such as attacks by competitors. With the mass adoption of remote work formats, the number of man-made threats, both external and internal, intentional and unintentional, has noticeably increased. Because of this, the workload on information security specialists has grown. Today's threat environment includes several increasingly prevalent attack vectors: Ransomware attacks: malicious software that encrypts company data and demands payment for its release. These attacks have become more sophisticated and targeted, often crippling entire organizations. Supply chain attacks: compromising software or hardware providers to gain access to their customers' systems. Attackers exploit trust relationships between organizations and their vendors. AI-powered threats: artificial intelligence is being used to create more convincing phishing campaigns, generate deepfakes for social engineering attacks, and automate vulnerability discovery. At the same time, AI is also being deployed defensively to detect and respond to threats faster. Social engineering and deepfakes: attackers use AI-generated audio and video to impersonate executives or trusted individuals, making fraudulent requests appear legitimate. Protection Measures Organizational information protection measures are implemented at several control levels. Administrative: the formation of standards, procedures, and protection principles. For example, developing a corporate security policy. At this level, it's important to understand what data you will protect and how. Logical: protection of access to software and information systems. At this control level, access rights are configured, passwords are set, and secure networks and firewalls are configured. Physical: at this level, physical infrastructure is controlled. This refers not only to access to equipment, but also to protection from fires, floods, and other emergency situations. Despite digitization, physical information protection remains no less important. Antivirus software and access rights separation won't help if attackers gain physical access to the server. They won't save you in case of an emergency either. To eliminate such problems, Hostman uses infrastructure in protected data centers.
20 October 2025 · 5 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support