Sign In
Sign In

7 Data Analytics Trends for 2022 That You Need to Watch Out For

7 Data Analytics Trends for 2022 That You Need to Watch Out For
Hostman Team
Technical writer
Infrastructure

Over the past few years, data analytics has become a goldmine. The more data a company has, the more insight they have to make smarter decisions. With the data industry worth an estimated $274 billion in 2022, it’s no wonder big data is the driving force for the future.

The pandemic continues to drive business digital transformations. Applications have an improved capacity to interpret incoming data for its user. This means that the opportunities for business growth are endless.

Organizations embrace the cutting-edge data technology available to them. Data analytics continues to evolve, from big data to artificial intelligence (AI), data-driven models are in demand more than ever.

With the pandemic and its economic disruptions, businesses now realize they need to better use the data available to them. With data analytics traditionally used to assess ‘what happened?’ It is now used to predict ‘what will happen?’

With that in mind, let’s take a look at the top seven data analytics trends for 2022 and how they can benefit your business.

Smarter artificial intelligence

With the introduction of artificial intelligence (AI), organizations are experiencing a specialized change in business strategy. AI accelerates business decision making by automating processes that determine data analytics.

By developing training models and testing metrics in agile methodology, AI ensures rapid data insight without the need for data scientists. Organizations are utilizing AI algorithms to measure, predict, and interpret large amounts of data. Data refers to the market, customers, and online applications.

The pandemic and the rise of remote work have increased opportunities to track and measure data. Due to this rise in data availability, establishing a new data-driven culture was necessary. A culture that fuels investments via AI-based technologies produces intuitive data analytics.

36cc4e764ec1ebd507d6023c304e5e34

Image Source

AI systems work with both large and small data sets. The systems protect privacy, are adaptive, and provide a faster return on investment. The advancement of intuitive UIs in services such as metabase analytical services promotes accessibility and efficiency. Simply put, it’s never been easier to interpret data.

Edge computing

CTO of Kinetica, Nima Negahban, describes edge computing as ‘data analysis that takes place on a device in real-time.’ She goes on to say that ‘edge computing is about processing data locally, and cloud computing is about processing data in a data center or public cloud.’

Edge computing delivers data analytics technology closer to the physical asset. From wrist wearables to mobile traffic apps, worldwide spending on edge computing is expected to reach $176 billion in 2022.

To introduce edge computing into business systems, industries need to include IoT app development and other data transformation services.

By processing data storage closer to the devices that collect it, edge computing is more reliable. With real-time processing there is no issue of latency, it is also more cost-efficient than cloud-based storage.

Cloud-based data solutions

As data is being produced in large quantities, there will be an increasing shift towards cloud-based solutions. A database in the cloud involves labeling, cleaning, formatting, and collecting. It equates to a mammoth amount of storage for one location. This is where cloud-based platforms come into play.

Untitled

Image Source

The cloud opens the door for the next generation of data warehousing. With added accuracy and security in the form of an existing QA framework. New practices such as data mesh, data fabric, and Data Vault 2.0 have been intrinsically built via the cloud.

  • Data mesh - a holistic approach that allows data products connectivity across many domains. Enabling an information exchange without the need for storage.

  • Data fabric - architecture that enables data access in a distributed environment.

  • Data Vault 2.0 - based on the potential of the cloud, Data Vault 2.0 provides greater productivity. Driven by metadata for collaborative configuration and management of testing models.

Whilst a private cloud for your business can be costly, a hybrid cloud provides both private and public agility. A hybrid cloud approach offers companies the opportunity to switch between multiple cloud platforms. This is a more cost-effective approach for your business.

Data fabric

Due to our booming digital age, our interconnected ecosystem has become more complex than ever. Finding a solution to connect devices, applications, and data infrastructure formats is a constant challenge. Data fabric emerges as the solution.

Data fabric is a new answer to an old dilemma. With 73% of analytical data going unused, it has become essential for missing data to become discoverable. Data fabrics fuse data from internal silos and external data sources. This leads to the discovery of effective networks and business applications.

More companies are using data fabric architecture to produce more discoverable, pervasive, and reusable data from all environments. This includes private, public, and mulitcloud cloud systems.

Data fabric connects data from contrasting applications to identify new data relationships. It’s a form of referral software that enables rapid decision-making and cost-efficiency. Accelerating hybrid data integration ensures digital security and greater business value.

Data fabric is a technology that will become commonplace over the next few years.

Augmented analytics

Augmented analytics is a leading analytics concept that uses natural language processing (NLP), machine learning (ML), and AI. What used to be handled by a data scientist is now automated to offer economical data sharing and insight discovery.

Augmented analytics produces data integration from internal and external enterprises. Due to the specialist applications, the outcomes are more precise. NLP, ML, and AI ensure in-depth reports and forecasts, data processing, analytics, and visualization.

  • Natural language processing - NLP provides computers with the ability to understand text and spoken words. It’s included in identifying patterns and trends in corporate operations. NLP is essential for tracking Twitter Analytics, understanding customer satisfaction, and smart assistants.

Untitled (1)

Image Source

  • Machine learning - there is a growing use of data analytics and ML to predict what will happen in digital analytics and the best response to counter. Using ML to target specific customer needs, such as analyzing social media activity to determine what product they might buy.
  • AI - AI helps make predictions more accurate, efficient, and cost-effective without the need for human intervention. AI will continue to be implemented in many different industries due to its unique possibilities.

With the introduction of all three, it has never been easier to measure, interpret, and predict results. Targeting specific customer behaviors reduces problems such as customers leaving their digital shopping cart abandoned and inefficient resources.

NLP, MI, and AI have the capabilities to assist business intelligence and aid business users.

Businesses are focussing on operational agility and resilience to recover from difficult market situations.

Automated machine learning

Applying ML models to real-world situations is known as automated machine learning (AutoML). ML is more user friendly when it is automated. It can create and deploy systems that even non-experts can master.

AutoML enhances monotonous workloads. Leaving human interaction free for more complemented questions (think of automation in call centers).

Untitled (2)

Image Source

Businesses are counting on AutoML to increase data insight as end-users have direct access to these applications. As more users utilize this model, generating insight becomes easier and easier.

With the continuous release of machine learning tools, technical aspects of data science will become automated. This accelerates decision making by automating processes that data scientists would generally perform.

Much like how a mobile application is a must for small business development, AutoML is essential for rapid data insight. The more platforms that use it, the faster it becomes.

XOps

XOps has become an important fixture in business enterprise. It encompasses DataOps, ModelOps, AIOps, and PlatformOps, enabling automation of technology and processes. Making it a dominant combination of IT disciplines and strategic decision making when it comes to AI and machine learning (ML).

XOps data professionals can process defined goals that align with their business priorities. Its main focus is to enhance business operations as well as customer experience. Enhancing operations means enhanced security, which awards applications and offers advanced protection from DDoS attacks.

XOps strives to reduce duplication, ensuring more efficient and reliable data outcomes. Enabling XOps data and analytics allows the user to begin automation from the beginning rather than as an afterthought. It allows you to orchestrate your automating software in a way that meets measurable goals. Allowing more efficient data collection.

To cut a long story short

As data science continues to take the spotlight. Breakthroughs in future analytics continue to progress. Presently, data has never been more accessible, with companies able to collect, manage, analyze, and leverage data for future business intelligence.

Data analytics has become an essential part of business functionality. AI trends and data analysis provide valuable insight that improves business automation, accessibility, and intuition.

Organizations that successfully impose the above trends will be able to harness data strategically and efficiently. Tools such as automated machine learning and edge computing can improve customer algorithms via results and feedback.

Ensuring the process of data accumulation and evaluation is accessible, business actions have never been more necessary. Constantly improving analytics means businesses are constantly preparing for the future.

Author: Emily Rollwitz - Content Marketing Executive, Global App Testing

Emily Rollwitz is a Content Marketing Executive at Global App Testing, a remote and on-demand API automation testing tools company helping top app teams deliver high-quality software, anywhere in the world. She has 5 years of experience as a marketer, spearheading lead generation campaigns and events that propel top-notch brand performance. Handling marketing of various brands, Emily has also developed a great pulse in creating fresh and engaging content. She’s written for great websites like Airdroid and Shift4Shop. You can find her on LinkedIn.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support