Sign In
Sign In

Working with SQL Databases in Python: A Detailed Guide

Working with SQL Databases in Python: A Detailed Guide
Hostman Team
Technical writer
Python SQL
17.07.2024
Reading time: 12 min

In today's world, where the volume of information is rapidly growing, its effective processing becomes a key point in any field of human activity. In this context, databases act as a repository, allowing information not only to be stored but also to be managed efficiently. In the tutorial below, we will learn how to work with databases in Python.

SQL (Structured Query Language) plays a significant role in the organization of databases. This query language provides a convenient way to interact with data, allowing you to create, modify, and retrieve information. The combination of Python and SQL provides convenient tools for automating processes and will enable developers to create flexible and scalable applications.

Working with SQL in Python is done through database management systems (DBMS). There are many DBMS, each with its own characteristics and purposes. From classical relational databases such as MySQL and PostgreSQL to NoSQL solutions such as MongoDB, the choice of a suitable DBMS depends on the specific project requirements. In this guide, we will look at systems such as:

  • SQLite

  • MySQL

  • PostgreSQL

In this guide, we will go through the key steps of interacting with SQL databases in Python, providing detailed instructions on how to use basic operations with examples from different DBMS. Let's start with installing the libraries and connecting to the database.

Installing the Libraries

Before working with SQL databases in Python, you need to install the appropriate libraries. Each database has its own package; let's look at some of them.

To work with SQLite, you need the sqlite3 library. This library is included in the standard Python library, so there's no need to install it separately. However, for working with MySQL and PostgreSQL, we need to install the libraries.

For MySQL:

pip install mysql-connector-python

For PostgreSQL:

pip install psycopg2

A general way to install for most databases:

pip install SQLAlchemy

The SQLAlchemy library provides an abstraction layer over various DBMS, allowing developers to interact with different systems without changing the core code. Additionally, it includes an ORM (Object-Relational Mapping) mechanism, which is necessary for working with databases by representing information as Python objects. Instead of writing direct SQL queries, you can interact with the database using Python objects that map to tables in the database.

After installing the appropriate libraries, we will be able to establish a connection to the SQL database directly from the Python runtime environment.

Connecting to the Database

Establishing a connection to the SQL database is an important step before starting to work with the information repository. This step ensures interaction between your Python code and the physical information storage. The process of connecting depends on the DBMS used.

For interacting with SQLite, you need to import the sqlite3 library and then connect to the database stored in a file:

import sqlite3 as sq
connection = sq.connect('your_database_name.db')

If the database file does not exist, it will be created automatically.

For interacting with MySQL in Python, the mysql.connector library is used. Here is an example of using this library to establish a connection:

import mysql.connector as con

connection = con.connect(
      host='your_actual_host',
      user='your_actual_user',
      password='your_actual_password',
      database='your_actual_database'
)

In this example:

  • your_actual_host — your MySQL host address;

  • your_actual_user — your username for database access;

  • your_actual_password — your user password;

  • your_actual_database — the name of the database you want to interact with.

For interacting with PostgreSQL in Python, the psycopg2 library is used. Here is an example of using psycopg2 to create a connection:

import psycopg2 as ps

connection = ps.connect(
     host='your_actual_host',
     user='your_actual_user',
     password='your_actual_password',
     database='your_actual_database'
)

When using SQLAlchemy, the connection can be established as follows:

from sqlalchemy import create_engine

database_url = 'sqlite:///your_database.db'
engine = create_engine(database_url)

If you use SQLAlchemy, the URL is a standard way of representing connection parameters. Depending on the type of database, it can include information about the host, user, password, port, and other parameters.

After successfully creating the connection, the next step is to create a cursor object. The cursor provides the program with an interface to move through the results of a query, retrieve information, and make changes to records. This step is independent of the database used, as it provides a common interface for executing SQL queries:

cursor = connection.cursor()

Now everything is ready to execute SQL queries in Python and interact with the database.

When you finish working with the cursor, for example, after performing all operations, it is important to close both the cursor and the connection:

cursor.close()
connection.close()

This is critical for efficient resource management and preventing memory leaks.

After successfully establishing a connection to the database, you are ready to start executing SQL queries and various operations.

Creating Tables and Schemas in DBMS

Before interacting with the database, you will need to create an SQL table in Python. Tables are entities where each row corresponds to a specific record, and columns define various attributes of this record. This is an important stage of database design, where the structure and types of records that will be stored in the database are defined.

Here is an example of creating a table for SQLite:

products_tb = '''
CREATE TABLE IF NOT EXISTS products (
     product_id INTEGER PRIMARY KEY AUTOINCREMENT,
     product_nm TEXT NOT NULL,
     price REAL CHECK (price >= 0),
     stock_quantity INTEGER CHECK(stock_quantity >= 0)
)
'''

This SQL query defines the products table with fields:

  • product_id, a unique product identifier serving as the primary key;

  • product_nm, a text field for the product name. NOT NULL indicates that this field must contain information;

  • price, the product price, which can contain decimal values;

  • stock_quantity, the quantity of products in stock, this field can only contain integers.

The combination of all these fields creates a table where each record (row) represents a separate product, and each column contains information about that product.

After creating the table, you need to execute the SQL query in Python and apply the changes:

cursor.execute(products_tb)
connection.commit()

After completing these steps, you will have a products table created in the SQLite database, ready for use. We can open the database in an SQLite database browser, such as DB Browser for SQLite, and see the created table.

Note that creating a table needs to be done only once, which is why there is a check IF NOT EXISTS.

Similarly, here is an SQL query to create a table for MySQL:

products_tb = '''
CREATE TABLE IF NOT EXISTS products (
     product_id INT AUTO_INCREMENT PRIMARY KEY,
     product_nm VARCHAR(255) NOT NULL,
     price DECIMAL(10, 2),
     stock_quantity INT
)
'''

cursor.execute(products_tb)

connection.commit()

And here is the creation of the products table in PostgreSQL:

products_tb = '''
    CREATE TABLE IF NOT EXISTS products (
        product_id SERIAL PRIMARY KEY,
        product_nm VARCHAR(255) NOT NULL,
        price DECIMAL(10, 2),
        stock_quantity INT
    );
'''

cursor.execute(products_tb)

connection.commit()

All these examples demonstrate creating tables for different DBMS. You can adapt the SQL queries depending on your database structure requirements.

Executing SQL Queries with Python

After successfully creating tables, we proceed to perform basic operations known as CRUD (Create, Read, Update, Delete). These operations allow us to add, read, update, and delete information in the database. Let’s delve into each of these operations in detail.

CREATE Operation

The CREATE operation in SQL is responsible for adding new records to a table. We use the INSERT statement to add records by specifying values for each column. Here are examples of adding a new record for each database:

Add information about a new product to the table we created in the previous section:

new_product = ('Laptop', 99.999, 10)

SQL query to add records for SQLite:

request_to_insert_data = '''
INSERT INTO products (product_nm, price, stock_quantity) VALUES (?, ?, ?);
'''

SQL query to add records for MySQL and PostgreSQL:

request_to_insert_data = '''
INSERT INTO products (product_nm, price, stock_quantity) VALUES (%s, %s, %s);
'''

To execute the SQL query for any database:

cursor.execute(request_to_insert_data, new_product)
connection.commit()

The cursor.execute() command executes the query using the given SQL statement and data, adding a new record to the database. The connection.commit() command applies the changes.

READ Operation

The READ operation retrieves data from the table. We use the SELECT statement to perform this procedure. The syntax is the same for all three databases (SQLite, MySQL, and PostgreSQL):

request_to_read_data = "SELECT * FROM products"

cursor.execute(request_to_read_data)

data = cursor.fetchall()

for row in data:
     print(data)

This code forms an SQL query to select all data from the products table, executes the query with the cursor, fetches the result, and prints it.

UPDATE Operation

The UPDATE operation modifies existing records using the UPDATE statement. Let’s change the price of the product with product_id = 1 to a new value of 109.99:

new_price = 109.99
product_id_to_update = 1

SQL query for updating records for SQLite:

request_to_update_data = "UPDATE products SET price = ? WHERE product_id = ?"

cursor.execute(request_to_update_data, (new_price, product_id_to_update))

connection.commit()

SQL query for updating records for MySQL and PostgreSQL:

request_to_update_data = "UPDATE products SET price = %s WHERE product_id = %s"

cursor.execute(request_to_update_data, (new_price, product_id_to_update))

connection.commit()

DELETE Operation

The DELETE operation removes records from the table using the DELETE statement.

Example for SQLite:

product_id_to_delete = 1
request_to_delete_data = "DELETE FROM products WHERE product_id = ?"
cursor.execute(request_to_delete_data, (product_id_to_delete,))

For MySQL and PostgreSQL:

product_id_to_delete = 1
request_to_delete_data = "DELETE FROM products WHERE product_id = %s"
cursor.execute(request_to_delete_data, (product_id_to_delete,))

connection.commit()

As previously mentioned, it is essential to terminate the interaction with the database correctly. After completing all CRUD operations, remember to close the cursor and connection:

cursor.close()
connection.close()

Database Search Optimization

Indexes are data structures associated with values in one or more columns of a table. They provide fast access to specific values, significantly improving query performance. Creating an index adds a data structure to the database, representing a sorted list of unique values of selected columns. This reduces the number of rows to search.

Creating an index for optimizing the search by the product_nm column in the products table:

request_to_index = "CREATE INDEX idx_product_nm ON products (product_nm(255))"
cursor.execute(request_to_index)
connection.commit()

Ensuring Data Integrity

Transactions ensure data integrity. They guarantee that a series of operations are executed atomically, meaning all changes are applied successfully, or none are applied at all. Here’s how to work with transactions in SQLite:

try:
	update_query = "UPDATE products SET price = ? WHERE product_id = ?"
	new_price = 123.456
	product_id_to_update = 1
	cursor.execute(update_query, (new_price, product_id_to_update))
	
	connection.commit()
	
	print("Transaction completed successfully.")

except Exception as e:
	connection.rollback()
	print(f"Error occurred: {str(e)} Transaction is rolled back.")

finally:
	connection.close()

This example uses a try-except-finally block to handle transactions. If any operation in the try block raises an exception, the transaction is rolled back using connection.rollback(). Otherwise, changes are committed with commit().

Automating Reactions to Events

Triggers are a unique type of stored procedures that automatically activate when certain events occur in the database. They automate reactions to data changes, such as inserting new records, updating existing ones, or deleting records.

In SQLite, triggers can be activated for INSERT, UPDATE, and DELETE events. For example, we have an orders table with fields order_id, product_nm, and quantity, and we want to create a trigger that decreases the inventory in the inventory table each time a new order is added:

trigger_request = '''
CREATE TRIGGER decrease_inventory
AFTER INSERT ON orders
BEGIN
     UPDATE inventory
     SET stock_quantity = stock_quantity - NEW.quantity
     WHERE product_nm = NEW.product_nm;
END;
'''

In MySQL, the syntax for a similar trigger is the same as in SQLite, except for the FOR EACH ROW keyword:

trigger_request = '''
CREATE TRIGGER decrease_inventory
AFTER INSERT ON orders
FOR EACH ROW
BEGIN
     UPDATE inventory
     SET stock_quantity = stock_quantity - NEW.quantity
     WHERE product_nm = NEW.product_nm;
END;
'''

In PostgreSQL, the syntax differs slightly. First, create a function for the trigger:

function_request = '''
CREATE OR REPLACE FUNCTION decrease_inventory()
RETURNS TRIGGER AS $$
BEGIN
     UPDATE inventory
     SET stock_quantity = stock_quantity - NEW.quantity
     WHERE product_nm = NEW.product_nm;
     RETURN NEW;
END;
$$ LANGUAGE plpgsql;
'''

Then create the trigger itself:

trigger_request = '''
CREATE TRIGGER decrease_inventory
AFTER INSERT ON orders
FOR EACH ROW
EXECUTE FUNCTION decrease_inventory();
'''

Conclusion

In this guide, we explored the basics of interacting with databases using Python. You now know how to use Python to connect to an SQL database, create tables, and use CRUD operations to manage data effectively. We also covered indexing, transactions, and using triggers for automation.

This guide serves as an introduction to SQL with Python. Next steps might include learning more complex queries, optimizing performance, and using advanced features specific to each DBMS.

Python SQL
17.07.2024
Reading time: 12 min

Similar

Python

How to Delete Characters from a String in Python

When writing Python code, developers often need to modify string data. Common string modifications include: Removing specific characters from a sequence Replacing characters with others Changing letter case Joining substrings into a single sequence In this guide, we will focus on the first transformation—deleting characters from a string in Python. It’s important to note that strings in Python are immutable, meaning that any method or function that modifies a string will return a new string object with the changes applied. Methods for Deleting Characters from a String This section covers the main methods in Python used for deleting characters from a string. We will explore the following methods: replace() translate() re.sub() For each method, we will explain the syntax and provide practical examples. replace() The first Pyhton method we will discuss is replace(). It is used to replace specific characters in a string with others. Since strings are immutable, replace() returns a new string object with the modifications applied. Syntax: original_string.replace(old, new[, count]) Where: original_string – The string where modifications will take place old – The substring to be replaced new – The substring that will replace old count (optional) – The number of occurrences to replace (if omitted, all occurrences will be replaced) First, let’s remove all spaces from the string "H o s t m a n": example_str = "H o s t m a n" result_str = example_str.replace(" ", "") print(result_str) Output: Hostman We can also use the replace() method to remove newline characters (\n). example_str = "\nHostman\nVPS" print(f'Original string: {example_str}') result_str = example_str.replace("\n", " ") print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS String after adjustments: Hostman VPS The replace() method has an optional third argument, which specifies the number of replacements to perform. example_str = "Hostman VPS Hostman VPS Hostman VPS" print(f'Original string: {example_str}') result_str = example_str.replace("Hostman VPS", "", 2) print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS Hostman VPS Hostman VPS String after adjustments: Hostman VPS Here, only two occurrences of "Hostman VPS" were removed, while the third occurrence remained unchanged. We have now explored the replace() method and demonstrated its usage in different situations. Next, let’s see how we can delete and modify characters in a string using translate(). translate( The Python translate() method functions similarly to replace() but with additional flexibility. Instead of replacing characters one at a time, it allows mapping multiple characters using a dictionary or translation table. The method returns a new string object with the modifications applied. Syntax: original_string.translate(mapping_table) In the first example, let’s remove all occurrences of the $ symbol in a string and replace them with spaces: example_str = "Hostman$Cloud$—$Cloud$Service$Provider." print(f'Original string: {example_str}') result_str = example_str.translate({ord('$'): ' '}) print(f'String after adjustments: {result_str}') Output: Original string: Hostman$Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. To improve code readability, we can define the mapping table before calling translate(). This is useful when dealing with multiple replacements: example_str = "\nHostman%Cloud$—$Cloud$Service$Provider.\n" print(f'Original string: {example_str}') # Define translation table example_table = {ord('\n'): None, ord('$'): ' ', ord('%'): ' '} result_str = example_str.translate(example_table) print(f'String after adjustments: {result_str}') Output: Original string: Hostman%Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. re.sub() In addition to replace() and translate(), we can use regular expressions for more advanced character removal and replacement. Python's built-in re module provides the sub() method, which searches for a pattern in a string and replaces it. Syntax: re.sub(pattern, replacement, original_string [, count=0, flags=0]) pattern – The regular expression pattern to match replacement – The string or character that will replace the matched pattern original_string – The string where modifications will take place count (optional) – Limits the number of replacements (default is 0, meaning replace all occurrences) flags (optional) – Used to modify the behavior of the regex search Let's remove all whitespace characters (\s) using the sub() method from the re module: import re example_str = "H o s t m a n" print(f'Original string: {example_str}') result_str = re.sub('\s', '', example_str) print(f'String after adjustments: {result_str}') Output: Original string: H o s t m a nString after adjustments: Hostman Using Slices to Remove Characters In addition to using various methods to delete characters, Python also allows the use of slices. As we know, slices extract a sequence of characters from a string. To delete characters from a string by index in Python, we can use the following slice: example_str = "\nHostman \nVPS" print(f'Original string: {example_str}') result_str = example_str[1:9] + example_str[10:] print(f'String after adjustments: {result_str}') In this example, we used slices to remove newline characters. The output of the code: Original string:HostmanVPSString after adjustments: Hostman VPS Apart from using two slice parameters, you can also use a third one, which specifies the step size for index increments. For example, if we set the step to 2, it will remove every odd-indexed character in the string. Keep in mind that indexing starts at 0. Example: example_str = "Hostman Cloud" print(f'Original string: {example_str}') result_str = example_str[::2] print(f'String after adjustments: {result_str}') Output: Original string: Hostman CloudString after adjustments: HsmnCod Conclusion In this guide, we learned how to delete characters from a string in Python using different methods, including regular expressions and slices. The choice of method depends on the specific task. For example, the replace() method is suitable for simpler cases, while re.sub() is better for more complex situations.
23 August 2025 · 5 min to read
Python

Command-Line Option and Argument Parsing using argparse in Python

Command-line interfaces (CLIs) are one of the quickest and most effective means of interacting with software. They enable you to provide commands directly which leads to quicker execution and enhanced features. Developers often build CLIs using Python for several applications, utilities, and automation scripts, ensuring they can dynamically process user input. This is where the Python argparse module steps in. The argparse Python module streamlines the process of managing command-line inputs, enabling developers to create interactive and user-friendly utilities. As part of the standard library, it allows programmers to define, process, and validate inputs seamlessly without the need for complex logic. This article will discuss some of the most important concepts, useful examples, and advanced features of the argparse module so that you can start building solid command-line tools right away. How to Use Python argparse for Command-Line Interfaces This is how to use argparse in your Python script: Step 1: Import Module First import the module into your Python parser script: import argparse This inclusion enables parsing .py arg inputs from the command line. Step 2: Create an ArgumentParser Object The ArgumentParser class is the most minimal class of the Python argumentparser module's API. To use it, begin by creating an instance of the class: parser = argparse.ArgumentParser(description="A Hostman tutorial on Python argparse.") Here: description describes what the program does and will be displayed when someone runs --help. Step 3: Add Inputs and Options Define the parameters and features your program accepts via add_argument() function: parser.add_argument('filename', type=str, help="Name of the file to process") parser.add_argument('--verbose', action='store_true', help="Enable verbose mode") Here: filename is a mandatory option. --verbose is optional, to allow you to set the flag to make it verbose. Step 4: Parse User Inputs Process the user-provided inputs by invoking the parse_args() Python method: args = parser.parse_args() This stores the command-line values as attributes of the args object for further use in your Python script.  Step 5: Access Processed Data Access the inputs and options for further use in your program: For example: print(f"File to process: {args.filename}") if args.verbose:     print("Verbose mode enabled") else:     print("Verbose mode disabled") Example CLI Usage Here are some scenarios to run this script: File Processing Without Verbose Mode python3 file.py example.txt File Processing With Verbose Mode python3 file.py example.txt --verbose Display Help If you need to see what arguments the script accepts or their description, use the --help argument: python3 file.py --help Common Examples of argparse Usage Let's explore a few practical examples of the module. Example 1: Adding Default Values Sometimes, optional inputs in command-line interfaces need predefined values for smoother execution. With this module, you can set a default value that applies when someone doesn’t provide input. This script sets a default timeout of 30 seconds if you don’t specify the --timeout parameter. import argparse # Create the argument parser parser = argparse.ArgumentParser(description="Demonstrating default argument values.") # Pass an optional argument with a default value parser.add_argument('--timeout', type=int, default=30, help="Timeout in seconds (default: 30)") # Interpret the arguments args = parser.parse_args() # Retrieve and print the timeout value print(f"Timeout value: {args.timeout} seconds") Explanation Importing Module: Importing the argparse module. Creating the ArgumentParser Instance: An ArgumentParser object is created with a description so that a short description of the program purpose is provided. This description is displayed when the user runs the program via the --help option. Including --timeout: The --timeout option is not obligatory (indicated by the -- prefix). The type=int makes the argument for --timeout an integer. The default=30 is provided so that in case the user does not enter a value, then the timeout would be 30 seconds. The help parameter adds a description to the argument, and it will also appear in the help documentation. Parsing Process: The parse_args() function processes user inputs and makes them accessible as attributes of the args object. In our example, we access args.timeout and print out its value. Case 1: Default Value Used If the --timeout option is not specified, the default value of 30 seconds is used: python file.py Case 2: Custom Value Provided For a custom value for --timeout (e.g., 60 seconds), apply: python file.py --timeout 60 Example 2: Utilizing Choices The argparse choices parameter allows you to restrict an argument to a set of beforehand known valid values. This is useful if your program features some specific modes, options, or settings to check. Here, we will specify a --mode option with two default values: basic and advanced. import argparse # Creating argument parser parser = argparse.ArgumentParser(description="Demonstrating the use of choices in argparse.") # Adding the --mode argument with predefined choices parser.add_argument('--mode', choices=['basic', 'advanced'], help="Choose the mode of operation") # Parse the arguments args = parser.parse_args() # Access and display the selected mode if args.mode: print(f"Mode selected: {args.mode}") else: print("No mode selected. Please choose 'basic' or 'advanced'.") Adding --mode: The choices argument indicates that valid options for the --mode are basic and advanced. The application will fail when the user supplies an input other than in choices. Help Text: The help parameter gives valuable information when the --help command is executed. Case 1: Valid Input To specify a valid value for --mode, utilize: python3 file.py --mode basic Case 2: No Input Provided For running the program without specifying a mode: python3 file.py Case 3: Invalid Input If a value is provided that is not in the predefined choices: python3 file.py --mode intermediate Example 3: Handling Multiple Values The nargs option causes an argument to accept more than one input. This is useful whenever your program requires a list of values for processing, i.e., numbers, filenames, or options. Here we will show how to use nargs='+' to accept a --numbers option that can take multiple integers. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating how to handle multiple values using argparse.") # Add the --numbers argument with nargs='+' parser.add_argument('--numbers', nargs='+', type=int, help="List of numbers to process") # Parse the arguments args = parser.parse_args() # Access and display the numbers if args.numbers: print(f"Numbers provided: {args.numbers}") print(f"Sum of numbers: {sum(args.numbers)}") else: print("No numbers provided. Please use --numbers followed by a list of integers.") Adding the --numbers Option: The user can provide a list of values as arguments for --numbers. type=int interprets the input as an integer. If a non-integer input is provided, the program raises an exception. The help parameter gives the information.  Parsing Phase: After parsing the arguments, the input to --numbers is stored in the form of a list in args.numbers. Utilizing the Input: You just need to iterate over the list, calculate statistics (e.g., sum, mean), or any other calculation on the input. Case 1: Providing Multiple Numbers To specify multiple integers for the --numbers parameter, execute: python3 file.py --numbers 10 20 30 Case 2: Providing a Single Number If just one integer is specified, run: python3 file.py --numbers 5 Case 3: No Input Provided If the script is run without --numbers: python3 file.py Case 4: Invalid Input In case of inputting a non-integer value: python3 file.py --numbers 10 abc 20 Example 4: Required Optional Arguments Optional arguments (those that begin with the --) are not mandatory by default. But there are times when you would like them to be mandatory for your script to work properly. You can achieve this by passing the required=True parameter when defining the argument. In this script, --config specifies a path to a configuration file. By leveraging required=True, the script enforces that a value for --config must be provided. If omitted, the program will throw an error. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating required optional arguments in argparse.") # Add the --config argument parser.add_argument('--config', required=True, help="Path to the configuration file") # Parse the arguments args = parser.parse_args() # Access and display the provided configuration file path print(f"Configuration file path: {args.config}") Adding the --config Option: --config is considered optional since it starts with --. However, thanks to the required=True parameter, users must include it when they run the script. The help parameter clarifies what this parameter does, and you'll see this information in the help message when you use --help. Parsing: The parse_args() method takes care of processing the arguments. If someone forgets to include --config, the program will stop and show a clear error message. Accessing the Input: The value you provide for --config gets stored in args.config. You can then use this in your script to work with the configuration file. Case 1: Valid Input For providing a valid path to the configuration file, use: python3 file.py --config settings.json Case 2: Missing the Required Argument For running the script without specifying --config, apply: python3 file.py Advanced Features  While argparse excels at handling basic command-line arguments, it also provides advanced features that enhance the functionality and usability of your CLIs. These features ensure your scripts are scalable, readable, and easy to maintain. Below are some advanced capabilities you can leverage. Handling Boolean Flags Boolean flags allow toggling features (on/off) without requiring user input. Use the action='store_true' or action='store_false' parameters to implement these flags. parser.add_argument('--debug', action='store_true', help="Enable debugging mode") Including --debug enables debugging mode, useful for many Python argparse examples. Grouping Related Arguments Use add_argument_group() to organize related arguments, improving readability in complex CLIs. group = parser.add_argument_group('File Operations') group.add_argument('--input', type=str, help="Input file") group.add_argument('--output', type=str, help="Output file") Grouped arguments appear under their own section in the --help documentation. Mutually Exclusive Arguments To ensure users select only one of several conflicting options, use the add_mutually_exclusive_group() method. group = parser.add_mutually_exclusive_group() group.add_argument('--json', action='store_true', help="Output in JSON format") group.add_argument('--xml', action='store_true', help="Output in XML format") This ensures one can choose either JSON or XML, but not both. Conclusion The argparse Python module simplifies creating reliable CLIs for handling Python program command line arguments. From the most basic option of just providing an input to more complex ones like setting choices and nargs, developers can build user-friendly and robust CLIs. Following the best practices of giving proper names to arguments and writing good docstrings would help you in making your scripts user-friendly and easier to maintain.
21 July 2025 · 10 min to read
Python

How to Get the Length of a List in Python

Lists in Python are used almost everywhere. In this tutorial we will look at four ways to find the length of a Python list: by using built‑in functions, recursion, and a loop. Knowing the length of a list is most often required to iterate through it and perform various operations on it. len() function len() is a built‑in Python function for finding the length of a list. It takes one argument—the list itself—and returns an integer equal to the list’s length. The same function also works with other iterable objects, such as strings. Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany"] count = len(Country_list) print("There are", count, "countries") Output: There are 4 countries Finding the Length of a List with a Loop You can determine a list’s length in Python with a for loop. The idea is to traverse the entire list while incrementing a counter by  1 on each iteration. Let’s wrap this in a separate function: def list_length(list): counter = 0 for i in list: counter = counter + 1 return counter Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany", "Japan"] count = list_length(Country_list) print("There are", count, "countries") Output: There are 5 countries Finding the Length of a List with Recursion The same task can be solved with recursion: def list_length_recursive(list): if not list: return 0 return 1 + list_length_recursive(list[1:]) Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland"] count = list_length_recursive(Country_list) print("There are", count, "countries") Output: There are 6 countries How it works. The function list_length_recursive() receives a list as input. If the list is empty, it returns 0—the length of an empty list. Otherwise it calls itself recursively with the argument list[1:], a slice of the original list starting from index 1 (i.e., the list without the element at index 0). The result of that call is added to 1. With each recursive step the returned value grows by one while the list shrinks by one element. length_hint() function The length_hint() function lives in the operator module. That module contains functions analogous to Python’s internal operators: addition, subtraction, comparison, and so on. length_hint() returns the length of iterable objects such as strings, tuples, dictionaries, and lists. It works similarly to len(): from operator import length_hint Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland", "Sweden"] count = length_hint(Country_list) print("There are", count, "countries") Output: There are 7 countries Note that length_hint() must be imported before use. Conclusion In this guide we covered four ways to determine the length of a list in Python. Under equal conditions the most efficient method is len(). The other approaches are justified mainly when you are implementing custom classes similar to list.
17 July 2025 · 3 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support