Sign In
Sign In

Installing Bitwarden in Docker

Installing Bitwarden in Docker
Hostman Team
Technical writer
Docker
30.08.2024
Reading time: 6 min

Bitwarden is a free, open-source password manager that stores sensitive information in an encrypted vault. It is written in C# using .NET Core and ASP.NET Core, and its database is based on the T-SQL/SQL Server.

Bitwarden is a cloud service accessible through various client applications, making it cross-platform: web, desktop (Windows, macOS, Linux), mobile apps, browser extensions (Chrome, Firefox, Safari, Edge, Opera, Vivaldi, Brave, Tor), or through the command line interface.

One key motivation for using Bitwarden is avoiding third-party password managers where sensitive data is stored on external servers. Instead, you can deploy Bitwarden on your secure server.

Bitwarden is based on a group of containers, each containing a separate functional component of the manager, such as the database or web server.

Therefore, installing and running Bitwarden requires a containerization system, which is Docker.

Here's a brief list of Bitwarden's features:

  • Open-source

  • Built on the 256-bit AES encryption standard to protect user data

  • Supports two-factor authentication

  • Password auditing and verification system

  • Biometric authentication support

  • Ability to host the server locally

  • Cross-platform client applications on all popular platforms

Prerequisites

This tutorial uses commands for UNIX-like operating systems, specifically Debian/Ubuntu, as they are often used for deploying server applications.

Before installing and configuring Bitwarden, ensure that all necessary system packages are installed and updated:

sudo apt update
sudo apt upgrade

If your cloud server is new, it's recommended to install some basic tools:

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common

Next, ensure that you have Docker and Docker Compose for managing Bitwarden containers. You can install them on Ubuntu/Debian using this guide.

Step 1. Install Docker and Its Components

First, add Docker's GPG key, which is used for signing packages:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Then, add the Docker repository to obtain the latest version:

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Update the system again:

sudo apt update

Finally, install Docker and Docker Compose:

sudo apt install docker-ce docker-ce-cli containerd.io docker-compose

Step 2. Secure Your Bitwarden Setup

To enhance security, create a dedicated user with limited permissions.

Create a directory for Bitwarden:

sudo mkdir /opt/bitwarden

Create the Bitwarden user:

sudo adduser bitwarden

Assign directory ownership to the Bitwarden user:

sudo chmod -R 700 /opt/bitwarden
sudo chown -R bitwarden:bitwarden /opt/bitwarden

Allow the Bitwarden user to run Docker commands:

sudo usermod -aG docker bitwarden

After setting permissions, switch to the Bitwarden user:

su bitwarden

Navigate to the installation directory:

cd /opt/bitwarden

Step 3. Install Bitwarden in Docker and Start the Server

Even if you're not familiar with Docker, Bitwarden's developers have provided an installation script that automates the process. Download it:

curl -Lso bitwarden.sh https://go.btwrdn.co/bw-sh && chmod 700 bitwarden.sh

Now run it:

./bitwarden.sh install

The script will prompt you for various configuration details, such as:

  • Domain name for Bitwarden

  • Database name

  • Whether to use Let's Encrypt for a free SSL certificate

Additionally, you will need to enter an installation ID and key, which you can generate on Bitwarden's official site.

Step 4. Set Up a Mail SMTP Server

Although optional, setting up an SMTP server is recommended for administrator login functionality.

If you are an experienced Docker user, you might want to consider the fairly simple mail server, docker-mailserver, which is well-suited for most Bitwarden tasks.

In the simplest scenario (which slightly contradicts the logic of deploying a local server for security purposes), you can use public mail servers, such as Gmail.

In that case, you should specify the following email parameters:

globalSettings__mail__replyToEmail=your_email@gmail.com
globalSettings__mail__smtp__host=smtp.gmail.com
globalSettings__mail__smtp__username=your_email
globalSettings__mail__smtp__password=your_password
globalSettings__mail__smtp__ssl=true
globalSettings__mail__smtp__port=587
globalSettings__mail__smtp__useDefaultCredentials=false
globalSettings__disableUserRegistration=true

Once these parameters are set, Bitwarden notifications will be sent to your Gmail.

However, make sure to enable the "allow less secure apps" option in your Gmail account. Otherwise, Google's email service might block messages from your password manager.

If you use a different mail service, find out its settings (specifically, the SMTP server host address) and specify them similarly in the global.override.env file.

That said, there is a chance that the SMTP configurations you provide may not work correctly, preventing messages from reaching your email server, whether it's yours or a third-party one.

Therefore, it might be wise to use an online SMTP checker to verify and fine-tune the correct settings in case any issues arise.

Step 5. Start the Server and Verify Operation

Start the server using the same script:

./bitwarden.sh start

Access the server via a web browser using its IP or domain name. To access the admin panel, append /admin to the server address.

The page will ask you to enter an email address—the same one whose details you added to the global.override.env file.

The mail server will send a link to this address for passwordless access to the admin panel.

From there, you can use any Bitwarden client applications that are available. For example, you can download the desktop client, enter your server's address, log in to Bitwarden, and use the manager to securely store your confidential data.

Stopping and Removing the Server

Sometimes, various issues may accumulate on the server side, requiring you to reinstall the manager.

To do this, first, completely remove Bitwarden using the same script:

./bitwarden.sh stop

Then, simply delete the manager's directory:

rm -r ~/bwdata

And perform a reinstallation if necessary:

./bitwarden.sh install

Conclusion

Installing Bitwarden is straightforward, with developers automating most of the deployment process. After the installation, you can secure your sensitive data with this robust password manager, leveraging DNS, SSL, and SMTP as needed.

You can find many useful tips on using Bitwarden for practical tasks in the official documentation.

Docker
30.08.2024
Reading time: 6 min

Similar

Docker

How to Install Docker on Ubuntu 22.04

Docker is a free, open-source tool for application containerization. Containers are isolated environments similar to virtual machines (VMs), but they are more lightweight and portable across platforms, requiring fewer system resources. Docker uses OS-level virtualization, leveraging features built into the Linux kernel. Apps order after installing Docker on Ubuntu Although it applies to other Ubuntu versions as well, this tutorial explains how to install Docker on Ubuntu 22.04. We'll also download Docker Compose, which is a necessary tool for effectively managing several containers. For this guide, we will use a Hostman cloud server. System Requirements According to Docker's documentation, the following 64-bit Ubuntu versions are supported: Ubuntu Oracular 24.10 Ubuntu Noble 24.04 (LTS) Ubuntu Jammy 22.04 (LTS) Ubuntu Focal 20.04 (LTS) Docker works on most popular architectures. The resource requirements for your device will depend on your intended use and how comfortably you want to work with Docker. The scale of applications you plan to deploy in containers will largely dictate the system needs. Some sources recommend a minimum of 2 GB of RAM. Additionally, a stable internet connection is required. Installing Docker on Ubuntu 22.04 Installing Docker on Ubuntu 22.04 involves executing a series of terminal commands. Below is a step-by-step guide with explanations. The steps are also applicable to server versions of Ubuntu. 1. Update Package Indexes The default repository may not always contain the latest software releases. Therefore, we will download Docker from its official repository to ensure the latest version. First, update the package indexes: sudo apt update 2. Install Additional Packages To install Docker, you’ll need to download four additional packages: curl: Required for interacting with web resources. software-properties-common: Enables software management via scripts. ca-certificates: Contains information about certification authorities. apt-transport-https: Necessary for data transfer over the HTTPS protocol. Download these packages with the following command: sudo apt install curl software-properties-common ca-certificates apt-transport-https -y The -y flag automatically answers "Yes" to all terminal prompts. 3. Import the GPG Key Software signatures must be verified using the GPG key. Docker's repository must be added to the local list. Use the command to import the GPG key: wget -O- https://download.docker.com/linux/ubuntu/gpg | gpg --dearmor | sudo tee /etc/apt/keyrings/docker.gpg > /dev/null During the import process, the terminal may display a warning before confirming the successful execution of the command. 4. Add Docker Repository Add the repository for your version of Ubuntu, named "Jammy." For other versions, use their respective code names listed in the "System Requirements" section. Run the following command: echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu jammy stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null During execution, the terminal will prompt you to confirm the operation. Press Enter. 5. Update Package Indexes Again After making these changes, update the package indexes once more using the familiar command: sudo apt update 6. Verify the Repository Ensure that the installation will proceed from the correct repository by running the following command: apt-cache policy docker-ce Output example: Depending on the most recent Docker releases, the result could change. Verifying that the installation will be carried out from Docker's official repository is crucial. 7. Installing Docker After configuring the repositories, proceed with the Docker installation: sudo apt install docker-ce -y The installation process will begin immediately. To confirm a successful installation, check Docker's status in the system: sudo systemctl status docker Output example: The output should indicate that the Docker service is active and running. Installing Docker Compose Docker Compose is a Docker tool designed for managing multiple containers. It is commonly used in projects where many containers must work together as a unified system. Managing this process manually can be challenging. Instead, you describe the entire configuration in a single YAML file containing the settings and configurations for all containers and their applications. There are several ways to install Docker Compose. If you need the latest version, make sure to use manual installation and installation via the Git version control system. Installation via apt-get If having the latest version is not critical for you, Docker Compose can be installed directly from the Ubuntu repository. Run the following command: sudo apt-get install docker-compose Installing via Git First, install Git: sudo apt-get install git Verify the installation by checking the Git version: git --version The output should show the Git version. Next, clone the Docker Compose repository. Navigate to the Docker Compose GitHub page and copy the repository URL. Run the following command to clone the repository: git clone https://github.com/docker/compose.git The cloning process will begin, and the repository will be downloaded from GitHub. Manual Installation Go to the Docker Compose GitHub repository and locate the latest release version under the Latest tag. At the time of writing, the Latest version of Docker Compose is v2.31.0. Let's download it: sudo curl -L "https://github.com/docker/compose/releases/download/v2.31.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose In this command, the parameters $(uname -s) and $(uname -m) automatically account for the system characteristics and architecture. After the download finishes, change the file's permissions: sudo chmod +x /usr/local/bin/docker-compose Right order of your infrastructure after installation of Docker on Ubuntu Conclusion In this guide, we covered the installation of Docker on Ubuntu 22.04, along with several ways to install Docker Compose. You can order a cloud server at Hostman for your experiments and practice.
22 August 2025 · 5 min to read
Docker

Running Selenium with Chrome in Docker

Sometimes, it’s useful to work with Selenium in Python within a Docker container. This raises questions about the benefits of using such tools, version compatibility between ChromeDriver and Chromium, and the nuances of their implementation. In this article, we’ll cover key considerations and provide solutions to common issues. Why Run Selenium in Docker? Running Selenium in a container offers several advantages: Portability: Easily transfer the environment between different machines, avoiding version conflicts and OS-specific dependencies. Isolation: The Selenium container can be quickly replaced or updated without affecting other components on the server. CI/CD Compatibility: Dockerized Selenium fits well into CI/CD pipelines — you can spin up a clean test environment from scratch each time your system needs testing. Preparing an Ubuntu Server for Selenium with Docker First, make sure Docker and Docker Compose are installed on the server: docker --version && docker compose version In some Docker Compose versions, the command is docker-compose instead of docker compose. If the tools are installed, you’ll see output confirming their versions. If not, follow this guide. Selenium in Docker Example When deploying Selenium in Docker containers, consider the host architecture, functional requirements, and performance. Official selenium/standalone-* images are designed for AMD64 (x86_64) CPUs, while seleniarm/standalone-* images are adapted for ARM architectures (e.g., Apple silicon or ARM64 server CPUs). First, create a docker-compose.yml file in your project root. It will contain two services: version: "3" services: app: build: . restart: always volumes: - .:/app depends_on: - selenium platform: linux/amd64 selenium: image: selenium/standalone-chromium:latest # For AMD64 # image: seleniarm/standalone-chromium:latest # For ARM64 container_name: selenium-container restart: unless-stopped shm_size: 2g ports: - "4444:4444" # Selenium WebDriver API - "7900:7900" # VNC Viewer environment: - SE_NODE_MAX_SESSIONS=1 - SE_NODE_OVERRIDE_MAX_SESSIONS=true - SE_NODE_SESSION_TIMEOUT=300 - SE_NODE_GRID_URL=http://localhost:4444 - SE_NODE_DETECT_DRIVERS=false You must choose the correct image for your system architecture by uncommenting the appropriate line. The app service will run your main Python code. Let’s define a standard Dockerfile for this service: # Use a minimal Python image FROM python:3.11-slim # Set working directory WORKDIR /app # Install Python dependencies COPY requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt # Copy project files COPY . /app/ # Set environment variables (Chromium is in a separate container) ENV SELENIUM_REMOTE_URL="http://selenium:4444/wd/hub" # Run Python script CMD ["python", "main.py"] This Dockerfile uses a base Python image and automatically installs the necessary dependencies. Now let’s add the driver initialization script to main.py: import time # Used to create a delay for checking browser functionality import os from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options # WebDriver settings chrome_options = Options() chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--disable-gpu") chrome_options.add_argument("--disable-webrtc") chrome_options.add_argument("--hide-scrollbars") chrome_options.add_argument("--disable-notifications") chrome_options.add_argument("--start-maximized") SELENIUM_REMOTE_URL = os.getenv("SELENIUM_REMOTE_URL", "http://selenium:4444/wd/hub") driver = webdriver.Remote( command_executor=SELENIUM_REMOTE_URL, options=chrome_options ) # Open a test page driver.get("https://www.timeweb.cloud") time.sleep(9999) # Shut down WebDriver driver.quit() In the requirements.txt file, list standard dependencies, including Selenium: attrs==25.1.0 certifi==2025.1.31 h11==0.14.0 idna==3.10 outcome==1.3.0.post0 PySocks==1.7.1 selenium==4.28.1 sniffio==1.3.1 sortedcontainers==2.4.0 trio==0.28.0 trio-websocket==0.11.1 typing_extensions==4.12.2 urllib3==2.3.0 websocket-client==1.8.0 wsproto==1.2.0 Now you can launch the containers: docker compose up -d Expected output: Docker will build and launch the containers. To verify everything is running correctly: docker compose ps You should see two running containers which means everything was loaded successfully. You can now integrate a script in main.py to interact with any site. Debugging Selenium in Docker with VNC In official Selenium Docker images (like seleniarm/standalone-chromium, selenium/standalone-chrome, etc.), direct access to the Chrome DevTools Protocol is usually overridden by Selenium Grid. It generates a new port for each session and proxies it via WebSocket. Arguments like --remote-debugging-port=9229 are ignored or overwritten by Selenium, making direct browser port access impossible from outside the container. Instead, these Docker images offer built-in VNC (Virtual Network Computing), similar to TeamViewer or AnyDesk, but working differently. VNC requires headless mode to be disabled, since it transmits the actual screen content — and if the screen is blank, there will be nothing to see. You can connect to the VNC web interface at: http://<server_ip>:7900 When connecting, you'll be asked for a password. To generate one, connect to the selenium-container via terminal: docker exec -it selenium-container bash Then enter: x11vnc -storepasswd You’ll be prompted to enter and confirm a password interactively. Enter the created password into the VNC web interface, and you’ll gain access to the browser controlled by Selenium inside Docker. From there, you can open DevTools to inspect DOM elements or debug network requests. Conclusion Running Selenium in Docker containers simplifies environment portability and reduces the risk of version conflicts between tools. It also allows visual debugging of tests via VNC, if needed. Just make sure to choose the correct image for your system architecture and disable headless mode when a graphical interface is required. This provides a more flexible and convenient infrastructure for testing and accelerates Selenium integration into CI/CD pipelines.
19 June 2025 · 5 min to read
Docker

Building Docker Images and Deploying Applications

Containerizing applications offers a convenient and flexible way to quickly deploy software, including web servers, databases, monitoring systems, and others. Containers are also widely used in microservices architectures. Docker is ideal for these purposes, as it greatly simplifies working with containerized apps. Introduced in 2013, Docker has seen continuous support and usage ever since. In this tutorial, you’ll learn how to create Docker images for three different applications written in different programming languages and how to run Docker containers from these images. Prerequisites To work with the Docker platform, you’ll need: A VPS or virtual machine with any Linux distribution preinstalled. In this tutorial, we use Ubuntu 22.04. Docker installed. You can find the Docker installation guide for Ubuntu 22.04 in our tutorials. Alternatively, you can use a prebuilt cloud server image with Docker — just select it in the “Marketplace” tab when creating a server. What Is a Docker Image? At the core of Docker’s concept is the image. A Docker image is a template—an executable file—you can use to start a Docker container. It contains everything needed to launch a ready-to-run application: source code, configuration files, third-party software, utilities, and libraries. Docker image architecture is layer-based. Each layer represents an action performed during the image build process, such as creating files and directories or installing software. Docker uses the OverlayFS file system, which merges multiple mount points into one, resulting in a unified directory structure. You can move Docker images between systems and use them in multiple locations, much like .exe executables in Windows systems. Creating Custom Docker Images Let’s walk through how to create Docker images for Flask, Node.js, and Go applications. Creating a Docker Image for a Flask Application To create images, a Dockerfile is used. Dockerfile is a plain text file without an extension that defines the steps to build a container image. You can find more details about Dockerfile instructions in the official documentation. We’ll create a Docker image with a web application built with Flask and run the container. The application will show a basic HTML page that displays the current date. 1. Install Required Packages Install the pip package manager and python3-venv for managing virtual environments: apt -y install python3-pip python3-venv 2. Create the Project Directory mkdir dockerfile-flask && cd dockerfile-flask 3. Create and Activate a Virtual Environment python -m venv env source env/bin/activate After activation, you'll see (env) in your prompt, indicating the virtual environment is active. Packages installed via pip will now only affect this environment. 4. Install Flask and Dependencies pip install flask pip install MarkupSafe==2.1.5 5. Create the Flask Application Create a file named app.py that will store the source code of our application: from flask import Flask import datetime app = Flask(__name__) @app.route('/') def display_current_date(): current_date = datetime.datetime.now().date() return f"Current date is: {current_date}" if __name__ == '__main__': app.run(debug=True) 6. Run and Test the Application flask run --host=0.0.0.0 --port=80 In your browser, visit your server’s IP address (port 80 doesn’t need to be specified as it’s the default one). You should see today’s date. 7. Freeze Dependencies Now, we need to save all the dependencies (just the flask package in our case) to a requirements.txt file, which stores all packages used in the project and installed via pip. pip freeze > requirements.txt Your project structure should now look like this: dockerfile-flask/ ├── app.py ├── env/ ├── requirements.txt Now we can proceed to creating a Docker image. 8. Create the Dockerfile Create a file named Dockerfile with the following contents: FROM python:3.8-slim-buster WORKDIR /app COPY requirements.txt requirements.txt RUN pip3 install -r requirements.txt COPY . . CMD [ "python3", "-m", "flask", "run", "--host=0.0.0.0", "--port=80" ] Explanation: FROM python:3.8-slim-buster: Use Python 3.8 base image on a lightweight Debian Buster base. WORKDIR /app: Set the working directory inside the container (similar to the mkdir command in Linux systems) COPY requirements.txt requirements.txt: Copy the dependency list into the image. RUN pip3 install -r requirements.txt: The RUN directive runs the commands in the image. In this case, it’s used to install dependencies. COPY . .: Copy all project files into the container. CMD [...]: CMD defines the commands and app parameters to be used when the container starts. 9. Use a .dockerignore File Create a .dockerignore file to exclude unnecessary directories. It helps to decrease the image size. In our case, we have two directories that we don’t need to launch the app. Add them to the .dockerignore file: env __pycache__ 10. Build the Docker Image When building the image, we need to use a tag that would work as an identifier for the image. We’ll use the flask-app:01 tag. docker build -t flask-app:01 . The dot at the end means the Dockerfile is located in the same directory where we run the command. Check the created image: docker images 11. Run the Docker Container docker run -d -p 80:80 flask-app:01 -d: Run the container in the background. -p: Forward host port 80 to container port 80. Check running containers: docker ps The STATUS column should show “Up”.  Open your browser and navigate to your server's IP address to view the app. Creating a Docker Image for a Node.js Application Our simple Node.js app will display the message: “This app was created using Node.js!” Make sure you have Node.js installed on your system. 1. Create the Project Directory mkdir dockerfile-nodejs && cd dockerfile-nodejs 2. Initialize the Project npm init --yes 3. Install Express npm install express --save 4. Create the Application File Create app.js with the following code: const express = require("express"); const app = express(); app.get("/", function(req, res) { return res.send("This app was created using Node.js!"); }); app.listen(3000, '0.0.0.0', function(){ console.log('Listening on port 3000'); }); 5. Test the Application node app.js Open http://<your-server-ip>:3000 in a browser to verify it works. 6. Create the Dockerfile FROM node:20 WORKDIR /app COPY package.json /app RUN npm install COPY . /app CMD ["node", "app.js"] 7. Add .dockerignore Create .dockerignore and the following line: **/node_modules/ 8. Build the Image docker build -t nodejs-app:01 . 9. Start the Container from Image docker run -d -p 80:3000 nodejs-app:01 Visit http://<your-server-ip> in your browser. The app should be running. Creating a Docker Image for a Go Application This Go application will display: “Hello from GO!” Make sure you have Go installed in your system. 1. Create the Project Directory mkdir dockerfile-go && cd dockerfile-go 2. Initialize the Go Module go mod init go-test-app 3. Create the Application File Create main.go with this code of our application: package main import "fmt" func main() { fmt.Println("Hello from GO!") } Verify it works: go run . 4. Create the Dockerfile FROM golang:1.23-alpine WORKDIR /app COPY go.mod ./ RUN go mod download COPY *.go ./ RUN go build -o /go-test CMD [ "/go-test" ] COPY go.mod ./: Adds dependencies file. RUN go mod download: Installs dependencies. COPY *.go ./: Adds source code. RUN go build -o /go-test: Compiles the binary. 5. Build the Image docker build -t go:01 . 6. Run the Container docker run go:01 You should see the output: Hello from GO! Conclusion In this guide, we walked through building custom Docker images for three applications written in different programming languages. Docker allows you to package any application and deploy it with ease.
18 June 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support