Sign In
Sign In

How to Update Python

How to Update Python
Awais Khan
Technical writer
Python
29.01.2025
Reading time: 8 min

As software evolves, so does the need to keep your programming environment up-to-date. Python, known for its versatility and widespread application, frequently sees new version releases. These updates frequently bring new features, performance enhancements, and crucial security patches for developers and organizations that depend on Python. Ensuring that Python is up-to-date guarantees enhanced performance and fortified security.

We'll explore different methods for updating Python, suited to your needs.

Prerequisites

Before starting, ensure you have:

  • Administrative access to your cloud server.
  • Reliable internet access.

Updating Python

Several methods are available to update Python on a cloud server. Here are four effective methods to achieve this.

Method 1: Via Package Manager

Employing a package manager makes updating Python a quick and effortless task. This approach is simple and quick, especially for users who are familiar with package management systems.

Step 1: Find the Current Python Version

Begin by validating the Python version on your server via:

python --version

or for Python 3:

python3 --version

Image3

Step 2: Update Package Repository

Make sure your package repository is updated to receive the latest version data by applying:

sudo apt update

Step 3: Upgrade Python

Then, proceed to use your package manager to install the current version of Python:

sudo apt install --upgrade python3

Image4

This will bring your Python installation up to the latest version provided by your package repository.

Method 2: Building Python from Source

Compiling Python from the source provides the ability to customize the build process and apply specific optimizations. This method is especially useful for developers who need a customized Python build tailored to their requirements. Check out these instructions:

Step 1: Install Dependencies

Get the essential dependencies from the default package manager for building process:

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev pkg-config libffi-dev wget

Image7

Step 2: Download Python Source Code

Then, get the updated Python source code by visiting the official website

Image6

You could also opt to download it directly using wget:

wget https://www.python.org/ftp/python/3.13.1/Python-3.13.1.tgz

Substitute 3.13.1 with your preferred Python version number.

Image9

Step 3: Extract the Package

Once downloaded, simply extract the tarball via:

tar -xf Python-<latest-version>.tgz

Image8

Step 4: Set Up and Compile Python

Enter the extracted folder and configure the installation using these commands:

cd Python-<latest-version>
./configure --enable-optimizations

Image11

Once done, compile Python via make command given below:

make -j $(nproc)

Image10

Note: The above command utilizes all available CPU cores to speed up the build process. On a machine with limited resources, such as CPU and 1GB RAM, limit the number of parallel jobs to reduce memory usage. For example, apply:

make -j1

Step 5: Install Python

Following compilation, go ahead and install Python through:

sudo make install

Image14

Note: The make altinstall command can be applied too instead of make install. Implementing this will prevent any interruptions to your system tools and applications that require the default Python version. However, extra steps are needed:

  • Verify the installed location via:

ls /usr/local/bin/python3.13
  • Apply update-alternatives system for managing and switching multiple Python versions:

sudo update-alternatives --install /usr/bin/python3 python3 /usr/local/bin/python3.13 1
sudo update-alternatives --config python3

Step 6: Validate the Python Installation

Close the terminal and open again. Then check the newly installed version via:

python3 --version

Image12

Method 3: Via Pyenv 

Pyenv is a go-to solution for maintaining different Python versions on the same system. It offers a versatile method for installing and switching between various Python versions. To update Python through Pyenv, use the following instructions.

Step 1: Install Dependencies

First, set up the dependencies needed for compiling Python:

sudo apt install -y make build-essential libssl-dev zlib1g-dev libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev git

Image13

Step 2: Install Pyenv

Following that, utilize the curl command to download and install Pyenv:

curl https://pyenv.run | bash

Image15

Step 3: Update Shell Configuration

After that, reload the shell configuration:

export PYENV_ROOT="$HOME/.pyenv"
[[ -d $PYENV_ROOT/bin ]] && export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init - bash)"

Step 4: Install Recent Python 

Once completion is completed, display all available Python versions with:

pyenv install --list

Image16

Then proceed to install the version you want via:

pyenv install <latest-version>  

Image17

Configure the newly installed version as the system-wide default through:

pyenv global <latest-version>

Image18

Step 5: Verify the Installation

Confirm the new Python version by applying:

python --version

Image19

Method 4: Via Anaconda 

Anaconda supplies a full-featured distribution of Python and R, specifically aimed at data science and computational applications. It simplifies package handling and implementation, providing an accessible and efficient framework for developers. Here’s are the steps:

Step 1: Fetch Anaconda Installer

Fetch the Anaconda installer script directly from the official site:

wget https://repo.anaconda.com/archive/Anaconda3-<latest-version>-Linux-x86_64.sh

Replace <latest-version> with the desired version number.

For example:

wget https://repo.anaconda.com/archive/Anaconda3-2024.06-1-Linux-x86_64.sh

Image20

Step 2: Run the Installer

Run the installer script through bash:

bash Anaconda3-<latest-version>-Linux-x86_64.sh

Image21

Adhere to the prompts to finalize the installation.

Step 3: Initialize Anaconda

Set up Anaconda by incorporating it into your shell configuration using:

source ~/.bashrc

Step 4: Update Anaconda

Ensure Anaconda is updated by applying:

conda update conda

Image22

Confirm the Python installation through:

conda install python=<version>

Image1

Step 5: Verify the Installation

Identify the Python version being utilized in your Anaconda configuration. Apply:

python --version

Image2

Additional Tips for Maintaining Your Python Environment

Listed below are some key practices to ensure your Python environment runs smoothly and efficiently:

  • Regular Updates and Maintenance

For maintaining optimal performance and security, it is important to keep your Python environment updated frequently. It's recommended to check for updates periodically and apply them as needed. 

  • Using Virtual Environments

It's a good idea to use virtual environments when working with Python. They let you set up separate environments for each project, so dependencies and versions stay separate. Tools like venv and virtualenv can help manage these environments efficiently.

  • Backup and Version Control

It's always a good idea to maintain backups of your important projects and configurations. Git helps you record changes, work with teammates, and switch back to older versions when needed.

Troubleshooting Common Issues

Listed here are frequent problems you may face and ways to solve them:

  • Dependency Conflicts

Sometimes, upgrading Python or installing new packages can lead to dependency conflicts. To resolve these conflicts, consider using tools like pipenv or poetry that manage dependencies and virtual environments.

  • Path Issues

After upgrading Python, you might encounter issues with the PATH environment variable. Ensure that your system recognizes the correct Python version by updating the PATH variable in your shell configuration file (e.g., .bashrc, .zshrc).

Security Considerations

Ensuring the protection of your Python environment is essential. Follow these recommendations to maintain a secure environment:

  • Stick to trusted sources when downloading packages. Use PIP's hash-checking mode to confirm package integrity.
  • Always review the code and documentation before incorporating a new package.
  • Stay informed with security updates and advisories from the Python ecosystem and package maintainers.
  • Keep PIP and your packages updated regularly to ensure protection with the newest security fixes and improvements.

FAQs

Q1: What's the recommended approach to updating Python on a cloud server?

A: The best method depends on your requirements. For a straightforward update, using a package manager is ideal. For customization, building from source is recommended. Pyenv is great for managing multiple versions, while Anaconda is tailored for data science needs.

Q2: How frequently should I update my Python environment?

A: Periodically review for updates and implement them to ensure top performance and robust security.

Q3: What should I do if I encounter issues after updating Python?

A: Refer to the troubleshooting section for common issues. Check the PATH variable for accuracy, and use virtual environments to solve any dependency conflicts.

Conclusion

Updating Python on a cloud server can be accomplished through various methods depending on your preferences and requirements. Whether using a package manager, compiling from source, managing versions with Pyenv, or leveraging Anaconda, each approach has its benefits. By following this comprehensive guide, you can ensure your Python environment remains current, secure, and equipped with the latest features. Regularly updating Python is essential to leverage new functionalities and maintain the security of your applications.

Python
29.01.2025
Reading time: 8 min

Similar

Python

How to Delete Characters from a String in Python

When writing Python code, developers often need to modify string data. Common string modifications include: Removing specific characters from a sequence Replacing characters with others Changing letter case Joining substrings into a single sequence In this guide, we will focus on the first transformation—deleting characters from a string in Python. It’s important to note that strings in Python are immutable, meaning that any method or function that modifies a string will return a new string object with the changes applied. Methods for Deleting Characters from a String This section covers the main methods in Python used for deleting characters from a string. We will explore the following methods: replace() translate() re.sub() For each method, we will explain the syntax and provide practical examples. replace() The first Pyhton method we will discuss is replace(). It is used to replace specific characters in a string with others. Since strings are immutable, replace() returns a new string object with the modifications applied. Syntax: original_string.replace(old, new[, count]) Where: original_string – The string where modifications will take place old – The substring to be replaced new – The substring that will replace old count (optional) – The number of occurrences to replace (if omitted, all occurrences will be replaced) First, let’s remove all spaces from the string "H o s t m a n": example_str = "H o s t m a n" result_str = example_str.replace(" ", "") print(result_str) Output: Hostman We can also use the replace() method to remove newline characters (\n). example_str = "\nHostman\nVPS" print(f'Original string: {example_str}') result_str = example_str.replace("\n", " ") print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS String after adjustments: Hostman VPS The replace() method has an optional third argument, which specifies the number of replacements to perform. example_str = "Hostman VPS Hostman VPS Hostman VPS" print(f'Original string: {example_str}') result_str = example_str.replace("Hostman VPS", "", 2) print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS Hostman VPS Hostman VPS String after adjustments: Hostman VPS Here, only two occurrences of "Hostman VPS" were removed, while the third occurrence remained unchanged. We have now explored the replace() method and demonstrated its usage in different situations. Next, let’s see how we can delete and modify characters in a string using translate(). translate( The Python translate() method functions similarly to replace() but with additional flexibility. Instead of replacing characters one at a time, it allows mapping multiple characters using a dictionary or translation table. The method returns a new string object with the modifications applied. Syntax: original_string.translate(mapping_table) In the first example, let’s remove all occurrences of the $ symbol in a string and replace them with spaces: example_str = "Hostman$Cloud$—$Cloud$Service$Provider." print(f'Original string: {example_str}') result_str = example_str.translate({ord('$'): ' '}) print(f'String after adjustments: {result_str}') Output: Original string: Hostman$Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. To improve code readability, we can define the mapping table before calling translate(). This is useful when dealing with multiple replacements: example_str = "\nHostman%Cloud$—$Cloud$Service$Provider.\n" print(f'Original string: {example_str}') # Define translation table example_table = {ord('\n'): None, ord('$'): ' ', ord('%'): ' '} result_str = example_str.translate(example_table) print(f'String after adjustments: {result_str}') Output: Original string: Hostman%Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. re.sub() In addition to replace() and translate(), we can use regular expressions for more advanced character removal and replacement. Python's built-in re module provides the sub() method, which searches for a pattern in a string and replaces it. Syntax: re.sub(pattern, replacement, original_string [, count=0, flags=0]) pattern – The regular expression pattern to match replacement – The string or character that will replace the matched pattern original_string – The string where modifications will take place count (optional) – Limits the number of replacements (default is 0, meaning replace all occurrences) flags (optional) – Used to modify the behavior of the regex search Let's remove all whitespace characters (\s) using the sub() method from the re module: import re example_str = "H o s t m a n" print(f'Original string: {example_str}') result_str = re.sub('\s', '', example_str) print(f'String after adjustments: {result_str}') Output: Original string: H o s t m a nString after adjustments: Hostman Using Slices to Remove Characters In addition to using various methods to delete characters, Python also allows the use of slices. As we know, slices extract a sequence of characters from a string. To delete characters from a string by index in Python, we can use the following slice: example_str = "\nHostman \nVPS" print(f'Original string: {example_str}') result_str = example_str[1:9] + example_str[10:] print(f'String after adjustments: {result_str}') In this example, we used slices to remove newline characters. The output of the code: Original string:HostmanVPSString after adjustments: Hostman VPS Apart from using two slice parameters, you can also use a third one, which specifies the step size for index increments. For example, if we set the step to 2, it will remove every odd-indexed character in the string. Keep in mind that indexing starts at 0. Example: example_str = "Hostman Cloud" print(f'Original string: {example_str}') result_str = example_str[::2] print(f'String after adjustments: {result_str}') Output: Original string: Hostman CloudString after adjustments: HsmnCod Conclusion In this guide, we learned how to delete characters from a string in Python using different methods, including regular expressions and slices. The choice of method depends on the specific task. For example, the replace() method is suitable for simpler cases, while re.sub() is better for more complex situations.
23 August 2025 · 5 min to read
Python

Command-Line Option and Argument Parsing using argparse in Python

Command-line interfaces (CLIs) are one of the quickest and most effective means of interacting with software. They enable you to provide commands directly which leads to quicker execution and enhanced features. Developers often build CLIs using Python for several applications, utilities, and automation scripts, ensuring they can dynamically process user input. This is where the Python argparse module steps in. The argparse Python module streamlines the process of managing command-line inputs, enabling developers to create interactive and user-friendly utilities. As part of the standard library, it allows programmers to define, process, and validate inputs seamlessly without the need for complex logic. This article will discuss some of the most important concepts, useful examples, and advanced features of the argparse module so that you can start building solid command-line tools right away. How to Use Python argparse for Command-Line Interfaces This is how to use argparse in your Python script: Step 1: Import Module First import the module into your Python parser script: import argparse This inclusion enables parsing .py arg inputs from the command line. Step 2: Create an ArgumentParser Object The ArgumentParser class is the most minimal class of the Python argumentparser module's API. To use it, begin by creating an instance of the class: parser = argparse.ArgumentParser(description="A Hostman tutorial on Python argparse.") Here: description describes what the program does and will be displayed when someone runs --help. Step 3: Add Inputs and Options Define the parameters and features your program accepts via add_argument() function: parser.add_argument('filename', type=str, help="Name of the file to process") parser.add_argument('--verbose', action='store_true', help="Enable verbose mode") Here: filename is a mandatory option. --verbose is optional, to allow you to set the flag to make it verbose. Step 4: Parse User Inputs Process the user-provided inputs by invoking the parse_args() Python method: args = parser.parse_args() This stores the command-line values as attributes of the args object for further use in your Python script.  Step 5: Access Processed Data Access the inputs and options for further use in your program: For example: print(f"File to process: {args.filename}") if args.verbose:     print("Verbose mode enabled") else:     print("Verbose mode disabled") Example CLI Usage Here are some scenarios to run this script: File Processing Without Verbose Mode python3 file.py example.txt File Processing With Verbose Mode python3 file.py example.txt --verbose Display Help If you need to see what arguments the script accepts or their description, use the --help argument: python3 file.py --help Common Examples of argparse Usage Let's explore a few practical examples of the module. Example 1: Adding Default Values Sometimes, optional inputs in command-line interfaces need predefined values for smoother execution. With this module, you can set a default value that applies when someone doesn’t provide input. This script sets a default timeout of 30 seconds if you don’t specify the --timeout parameter. import argparse # Create the argument parser parser = argparse.ArgumentParser(description="Demonstrating default argument values.") # Pass an optional argument with a default value parser.add_argument('--timeout', type=int, default=30, help="Timeout in seconds (default: 30)") # Interpret the arguments args = parser.parse_args() # Retrieve and print the timeout value print(f"Timeout value: {args.timeout} seconds") Explanation Importing Module: Importing the argparse module. Creating the ArgumentParser Instance: An ArgumentParser object is created with a description so that a short description of the program purpose is provided. This description is displayed when the user runs the program via the --help option. Including --timeout: The --timeout option is not obligatory (indicated by the -- prefix). The type=int makes the argument for --timeout an integer. The default=30 is provided so that in case the user does not enter a value, then the timeout would be 30 seconds. The help parameter adds a description to the argument, and it will also appear in the help documentation. Parsing Process: The parse_args() function processes user inputs and makes them accessible as attributes of the args object. In our example, we access args.timeout and print out its value. Case 1: Default Value Used If the --timeout option is not specified, the default value of 30 seconds is used: python file.py Case 2: Custom Value Provided For a custom value for --timeout (e.g., 60 seconds), apply: python file.py --timeout 60 Example 2: Utilizing Choices The argparse choices parameter allows you to restrict an argument to a set of beforehand known valid values. This is useful if your program features some specific modes, options, or settings to check. Here, we will specify a --mode option with two default values: basic and advanced. import argparse # Creating argument parser parser = argparse.ArgumentParser(description="Demonstrating the use of choices in argparse.") # Adding the --mode argument with predefined choices parser.add_argument('--mode', choices=['basic', 'advanced'], help="Choose the mode of operation") # Parse the arguments args = parser.parse_args() # Access and display the selected mode if args.mode: print(f"Mode selected: {args.mode}") else: print("No mode selected. Please choose 'basic' or 'advanced'.") Adding --mode: The choices argument indicates that valid options for the --mode are basic and advanced. The application will fail when the user supplies an input other than in choices. Help Text: The help parameter gives valuable information when the --help command is executed. Case 1: Valid Input To specify a valid value for --mode, utilize: python3 file.py --mode basic Case 2: No Input Provided For running the program without specifying a mode: python3 file.py Case 3: Invalid Input If a value is provided that is not in the predefined choices: python3 file.py --mode intermediate Example 3: Handling Multiple Values The nargs option causes an argument to accept more than one input. This is useful whenever your program requires a list of values for processing, i.e., numbers, filenames, or options. Here we will show how to use nargs='+' to accept a --numbers option that can take multiple integers. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating how to handle multiple values using argparse.") # Add the --numbers argument with nargs='+' parser.add_argument('--numbers', nargs='+', type=int, help="List of numbers to process") # Parse the arguments args = parser.parse_args() # Access and display the numbers if args.numbers: print(f"Numbers provided: {args.numbers}") print(f"Sum of numbers: {sum(args.numbers)}") else: print("No numbers provided. Please use --numbers followed by a list of integers.") Adding the --numbers Option: The user can provide a list of values as arguments for --numbers. type=int interprets the input as an integer. If a non-integer input is provided, the program raises an exception. The help parameter gives the information.  Parsing Phase: After parsing the arguments, the input to --numbers is stored in the form of a list in args.numbers. Utilizing the Input: You just need to iterate over the list, calculate statistics (e.g., sum, mean), or any other calculation on the input. Case 1: Providing Multiple Numbers To specify multiple integers for the --numbers parameter, execute: python3 file.py --numbers 10 20 30 Case 2: Providing a Single Number If just one integer is specified, run: python3 file.py --numbers 5 Case 3: No Input Provided If the script is run without --numbers: python3 file.py Case 4: Invalid Input In case of inputting a non-integer value: python3 file.py --numbers 10 abc 20 Example 4: Required Optional Arguments Optional arguments (those that begin with the --) are not mandatory by default. But there are times when you would like them to be mandatory for your script to work properly. You can achieve this by passing the required=True parameter when defining the argument. In this script, --config specifies a path to a configuration file. By leveraging required=True, the script enforces that a value for --config must be provided. If omitted, the program will throw an error. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating required optional arguments in argparse.") # Add the --config argument parser.add_argument('--config', required=True, help="Path to the configuration file") # Parse the arguments args = parser.parse_args() # Access and display the provided configuration file path print(f"Configuration file path: {args.config}") Adding the --config Option: --config is considered optional since it starts with --. However, thanks to the required=True parameter, users must include it when they run the script. The help parameter clarifies what this parameter does, and you'll see this information in the help message when you use --help. Parsing: The parse_args() method takes care of processing the arguments. If someone forgets to include --config, the program will stop and show a clear error message. Accessing the Input: The value you provide for --config gets stored in args.config. You can then use this in your script to work with the configuration file. Case 1: Valid Input For providing a valid path to the configuration file, use: python3 file.py --config settings.json Case 2: Missing the Required Argument For running the script without specifying --config, apply: python3 file.py Advanced Features  While argparse excels at handling basic command-line arguments, it also provides advanced features that enhance the functionality and usability of your CLIs. These features ensure your scripts are scalable, readable, and easy to maintain. Below are some advanced capabilities you can leverage. Handling Boolean Flags Boolean flags allow toggling features (on/off) without requiring user input. Use the action='store_true' or action='store_false' parameters to implement these flags. parser.add_argument('--debug', action='store_true', help="Enable debugging mode") Including --debug enables debugging mode, useful for many Python argparse examples. Grouping Related Arguments Use add_argument_group() to organize related arguments, improving readability in complex CLIs. group = parser.add_argument_group('File Operations') group.add_argument('--input', type=str, help="Input file") group.add_argument('--output', type=str, help="Output file") Grouped arguments appear under their own section in the --help documentation. Mutually Exclusive Arguments To ensure users select only one of several conflicting options, use the add_mutually_exclusive_group() method. group = parser.add_mutually_exclusive_group() group.add_argument('--json', action='store_true', help="Output in JSON format") group.add_argument('--xml', action='store_true', help="Output in XML format") This ensures one can choose either JSON or XML, but not both. Conclusion The argparse Python module simplifies creating reliable CLIs for handling Python program command line arguments. From the most basic option of just providing an input to more complex ones like setting choices and nargs, developers can build user-friendly and robust CLIs. Following the best practices of giving proper names to arguments and writing good docstrings would help you in making your scripts user-friendly and easier to maintain.
21 July 2025 · 10 min to read
Python

How to Get the Length of a List in Python

Lists in Python are used almost everywhere. In this tutorial we will look at four ways to find the length of a Python list: by using built‑in functions, recursion, and a loop. Knowing the length of a list is most often required to iterate through it and perform various operations on it. len() function len() is a built‑in Python function for finding the length of a list. It takes one argument—the list itself—and returns an integer equal to the list’s length. The same function also works with other iterable objects, such as strings. Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany"] count = len(Country_list) print("There are", count, "countries") Output: There are 4 countries Finding the Length of a List with a Loop You can determine a list’s length in Python with a for loop. The idea is to traverse the entire list while incrementing a counter by  1 on each iteration. Let’s wrap this in a separate function: def list_length(list): counter = 0 for i in list: counter = counter + 1 return counter Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany", "Japan"] count = list_length(Country_list) print("There are", count, "countries") Output: There are 5 countries Finding the Length of a List with Recursion The same task can be solved with recursion: def list_length_recursive(list): if not list: return 0 return 1 + list_length_recursive(list[1:]) Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland"] count = list_length_recursive(Country_list) print("There are", count, "countries") Output: There are 6 countries How it works. The function list_length_recursive() receives a list as input. If the list is empty, it returns 0—the length of an empty list. Otherwise it calls itself recursively with the argument list[1:], a slice of the original list starting from index 1 (i.e., the list without the element at index 0). The result of that call is added to 1. With each recursive step the returned value grows by one while the list shrinks by one element. length_hint() function The length_hint() function lives in the operator module. That module contains functions analogous to Python’s internal operators: addition, subtraction, comparison, and so on. length_hint() returns the length of iterable objects such as strings, tuples, dictionaries, and lists. It works similarly to len(): from operator import length_hint Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland", "Sweden"] count = length_hint(Country_list) print("There are", count, "countries") Output: There are 7 countries Note that length_hint() must be imported before use. Conclusion In this guide we covered four ways to determine the length of a list in Python. Under equal conditions the most efficient method is len(). The other approaches are justified mainly when you are implementing custom classes similar to list.
17 July 2025 · 3 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support