How to Track Pod-to-Pod Traffic in Kubernetes

How to Track Pod-to-Pod Traffic in Kubernetes
Hostman Team
Technical writer
Kubernetes
16.08.2024
Reading time: 7 min

This article is for those seeking a simple and clear introduction to organizing and managing Kubernetes clusters or for those looking to optimize their projects. We will discuss the intricacies of Kubernetes networking technologies and explore some principles and mechanisms that govern Kubernetes pod-to-pod interactions. We'll examine the Kubernetes network model using a VirtualBox setup. By studying this solution's default settings, you'll understand how communication between pods is established in a Kubernetes environment, which you can apply in practice. But first, a bit of theory.

Two Kubernetes Standards

Instead of a rigid network implementation, Kubernetes uses the CRI and CNI standards, offering its own plugins with many configuration options for a Kubernetes cluster networking setup. Thus, instead of a single infrastructural solution, a wide range of alternatives is offered. Each solution allows you to create a unique Kubernetes pod network structure. This enables you to choose the approach that best meets your requirements, considering scalability, performance, fault tolerance, and compatibility with your infrastructure. Of course, such variability also brings some challenges with specific network solutions. But with proper configuration, you'll ensure optimal network performance, reliable connectivity, and convenient cluster management.

It's worth noting that both standards offer several popular solutions. For CRI, the main options are containerd and cri-o, while CNI includes Calico and Flannel. They all provide essential functions for container runtime environments, allowing you to choose the parameters that best suit your needs and preferences. Often, these plugins complement rather than exclude each other. Naturally, such combinations require some configuration effort to guarantee the stable operation of the entire assembly. This task is significantly simplified by distributions where CRI and CNI plugins are usually preconfigured so that the user can immediately start configuring Kubernetes applications.

Among paid distributions, Red Hat Openshift is noteworthy, but there are also quite functional free products, primarily OKD, minikube, and areguera-k8s-lab, which we will use to learn how to track pod-to-pod traffic.

Cluster Architecture

In vagrant-k8-lab, containerd and Flannel are embedded in each node, providing the following structure: 

Image4

Image source: medium.com

We should note that in this case, each node is connected to four interfaces: eth0, eth1, cni0, and lo. Each of them has its purpose, which we will now discuss in detail. You may also notice that several pods are already deployed in the cluster, which we'll use for subsequent tests.

Node-to-Internet Traffic, eth0

To download container images from outside, the CRI plugin requires outgoing traffic. The OS package manager also needs access to remote repositories. When Kubernetes nodes are deployed using VirtualBox, eth0 is connected by default in NAT mode. The guest OS gets IP 10.0.2.15 and exchanges data with VirtualBox via IP 10.0.2.3. These are the default settings, ensuring that virtual machines can interact with the "outside world" provided the host running VirtualBox has the necessary connection. Here's how it looks schematically:

Image3 (2)

Image source: medium.com

Of course, the default VirtualBox network scheme may seem somewhat illogical until you understand that virtual machines are connected to different networks, even if they all use the same address space. This VirtualBox design choice allows for external resource connections using a consistent IP addressing scheme across all virtual machines.

In the default VirtualBox network scheme, connections between virtual machines are handled individually. Each virtual machine is connected to its isolated 10.0.2.0/24 network inside VirtualBox, using a unique virtual channel for each internal network. Thus, virtual machines can interact with the outside world but not each other.

Now, let's create a pod using an image:

[vagrant@node-1 ~]$ kubectl run nginx --image=nginx:latest

Then check its status:

[vagrant@node-1 ~]$ kubectl get pods/nginx
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          10m

If the status is Running, everything is fine, and the pod is active on node 1, provided the Kubernetes scheduler selected this node. To verify this, enter the following commands sequentially:

[vagrant@node-1 ~]$ kubectl describe pods/nginx
[vagrant@node-1 ~]$ journalctl -f -u containerd

Node-to-Node Traffic, eth1

To connect nodes to a single external channel, a direct connection is required. Therefore, eth0 is unsuitable for this purpose, and another type of network connection is needed. Here, eth1 comes to the rescue, implementing a simple and effective scheme:

Image5

Image source: medium.com

As we can see, each node is assigned its IP within a specific range, starting with 192.168.56.10/24 for the master, 192.168.56.11/24 for the first worker node, and 192.168.56.12/24 for the second.

Now let's check the connection parameters for both worker nodes by entering the following commands:

[vagrant@controlplane ~]$ traceroute -n 192.168.56.11
[vagrant@controlplane ~]$ traceroute -n 192.168.56.12

If the connection is successful, you'll see the number of packets transmitted and the transmission time in milliseconds.

Pod-to-Pod Traffic Within a Node, cni0

Kubernetes pod-to-pod networking occurs when running Kubernetes applications on a single node. In this case, pods need unique IPs to exchange data. You know that pods have a defined lifespan and are destroyed as easily as they are created. This is implemented using the CNI plugin, and schematically it looks like this:

Image1

Image source: medium.com

Now let's create a pod from an image:

[vagrant@node-1 ~]$ kubectl run httpd --image=httpd

Next, we need to find out the IP of the created pod, which is done using:

[vagrant@controlplane ~]$ kubectl get pods -o wide

Now, using the busybox image, we create a new pod, substituting the obtained IP value:

[vagrant@node-1 ~]$ kubectl run traceroute --image=busybox -- traceroute IP

Finally, check the connection parameters by entering the following command to display the log:

[vagrant@node-1 ~]$ kubectl logs traceroute

If the log indicates only one hop during routing (traceroute), then we are dealing with cni0, meaning the k8s networking occurs within a single node.

Inter-Node Pod-to-Pod Traffic

Single-node Kubernetes clusters are good for testing but don't provide sufficient fault tolerance for real projects. If a single node goes down, the entire application crashes. That's why developers create multi-node clusters, where the load is often evenly distributed across nodes. For this purpose, the Flannel plugin is used, providing "smart" traffic routing without manually controlling the Kubernetes traffic routing process. Here's what a multi-node cluster looks like:

Image2

Image source: medium.com

Let's create a pod from an image, ensuring that the pod will be placed on the appropriate node (in our case, the first worker node):

[vagrant@controlplane ~]$ kubectl run httpd --image=httpd \
--overrides= '{"spec": { "nodeSelector": {"kubernetes.io/hostname": "node-1"}}}'

Then enter another familiar command:

[vagrant@controlplane ~]$ kubectl get pods -o wide

Now, as in the previous example, create a new pod using the busybox image, but this time on the second worker node, substituting the obtained IP value:

[vagrant@controlplane ~]$ kubectl run traceroute --image=busybox \
--overrides='{"spec": { "nodeSelector": {"kubernetes.io/hostname": "node-2"}}}' \
-- traceroute IP

Finally, execute the command to track the routing:

[vagrant@controlplane ~]$ kubectl logs traceroute

If everything works correctly, you'll see three hops corresponding to the cni0-eth1-cni0 scheme.

Conclusion

In this tutorial, we reviewed how you can easily manage k8s network configuration using standard Kubernetes tools and a connected distribution, creating various schemes and organizing and tracing Kubernetes pod traffic within single or multiple nodes in a cluster.

Kubernetes
16.08.2024
Reading time: 7 min

Similar

Kubernetes

Installing MongoDB in a Kubernetes Cluster

MongoDB is a widely used NoSQL database designed to store large volumes of unstructured data. Combined with Kubernetes, MongoDB becomes a powerful solution for scaling databases efficiently within a unified environment. Prerequisites To install MongoDB on Kubernetes, you'll need a configured cloud server (or a physical one) with superuser rights and a Kubernetes cluster. While any OS can be used, Linux is recommended for minimal installation issues. Step-by-Step MongoDB Installation Connect to the Server: Gain superuser access and install necessary software: sudo -s apt-get update && apt install curl apt-transport-https -y && curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - && echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee -a /etc/apt/sources.list.d/kubernetes.list && apt-get update && apt install kubectl -y Configure Kubernetes Environment: Create a directory, add the configuration file, and set the environment variable: mkdir /usr/local/etc/mongo && cd /usr/local/etc/mongo cat << EOF > testcluster.conf<insert your cluster config data here>EOF echo "export KUBECONFIG=testcluster.conf" >> ~/.bashrc Verify Connection: Use kubectl cluster-info to check the connection. A successful connection will display:  Kubernetes control plane is running at <IP>. Create MongoDB Configuration Files: Set up a container for data storage and create a Creds.yaml file for MongoDB credentials. Encrypt login and password using BASE64: echo <unencrypted data> | base64echo <encrypted data> | base64 -d Example: apiVersion: v1 data: username: <username encrypted with BASE64> password: <password encrypted with BASE64> kind: Secret metadata: creationTimestamp: null name: creds Deploy MongoDB: Create a PersistVolClaim.yaml file with MongoDB configuration and deploy it using: kubectl apply -f PersistVolClaim.yaml The file example: apiVersion: apps/v1 kind: Deployment metadata: labels: app: mongo name: mongo spec: replicas: 1 selector: matchLabels: app: mongo strategy: {} template: metadata: labels: app: mongo spec: containers: - image: mongo name: mongo args: ["--dbpath","/data/db"] livenessProbe: exec: command: - mongo - --disableImplicitSessions - --eval readinessProbe: exec: command: - mongo - --disableImplicitSessions - --eval env: - name: MONGO_INITDB_ROOT_USERNAME valueFrom: secretKeyRef: name: creds key: username - name: MONGO_INITDB_ROOT_PASSWORD valueFrom: secretKeyRef: name: creds key: password volumeMounts: - name: "datadir" mountPath: "/data/db" volumes: - name: "datadir" persistentVolumeClaim: claimName: "mongopvc" Test MongoDB Connection: After deploying containers, verify the connection: kubectl exec deployment/client -it -- /bin/bashmongo If everything is connected successfully, the system will display a typical database prompt. To create a new database, simply switch to it; however, note that it will not be saved until you add some data. This can be done as follows: use database_name db.createCollection("newdata") show dbs The last command is used to verify that the newly created database exists. Considerations for MongoDB in Kubernetes Remote Storage: For flexibility, use remote storage for MongoDB to facilitate movement if needed. Resource Management: Configure requests and limits in replica pods to avoid performance issues. Pod Disruption Budget: Set up to maintain the desired number of running replicas. Other Tools and Customization The method of installing MongoDB in Kubernetes described here is one of many options. You can also use software specifically designed to work with Kubernetes, such as Helm or KubeDB. KubeDB, in particular, was created to simplify the integration of other products into Kubernetes. As for Helm, it is another popular solution by VMware (although VMware didn't develop it but acquired and now maintains the product). Another solution is Percona Operator. This modern, open-source application (developed in 2018) is user-friendly and continuously improved by the community. Some people use combined solutions like Percona + Helm. However, installing MongoDB using each of these applications has its nuances, so it's advisable to study these products before proceeding; plenty of documentation is available. In conclusion, you can use a customized MongoDB image to manage a MongoDB cluster in Kubernetes according to your specific needs. For example, the default MongoDB image doesn't include authentication. Therefore, you can download an image with pre-configured authentication or create your own. Of course, using customized Docker images is slightly more complex than the implementation described above. Still, it gives you full control over the database configurations and settings according to your requirements. You can find useful information on customizing the official MongoDB image here. Conclusion With this guide, you can deploy MongoDB in a Kubernetes cluster. However, further tasks will require some knowledge of Kubernetes, so if you're not familiar with it, we recommend first studying the official documentation.
23 August 2024 · 5 min to read
Kubernetes

Kubernetes Cluster: Installation, Configuration, and Management

Kubernetes, or K8s, is an open-source container orchestration platform developed by Google. The core concept behind Kubernetes is that a user installs it on a server, or more likely a cluster, and deploys various workloads on it. Kubernetes addresses challenges related to container creation, scaling, namespaces, access rights, and more. The primary interaction with the cluster is through YAML configuration files. This tutorial will guide you through creating and deploying a Kubernetes cluster locally. Creating Virtual Machines We will set up the Kubernetes cluster on two virtual machines: one acting as the master node and the other as a worker node. While deploying a cluster with only two nodes is not practical for real-world use, it is sufficient for educational purposes. If you wish to create a Kubernetes cluster with more nodes, simply repeat the process for each additional node. We will use Oracle's VirtualBox to create virtual machines, which you can download from this link. After installation, proceed to create the virtual machines. For the operating system, we will use Ubuntu Server, which can be downloaded here. After downloading, open VirtualBox. Click "Create" in VirtualBox to create a new virtual machine. The default settings are sufficient, but allocate 3 GB of RAM and 2 CPUs for the master node (which manages the Kubernetes cluster) and 2 GB of RAM for the worker node. Kubernetes requires a minimum of 2 CPUs for the master node. Create two virtual machines this way. After creating the virtual machines, create a boot image with the Ubuntu Server distribution. Go to "Storage" and click "Choose/Create a Disk Image." Click "Add" and select the Ubuntu Server distribution. Then, start both machines and install the operating system by selecting "Try or Install Ubuntu." During installation, create users for each system and choose the default settings. After installation, shut down both virtual machines and go to their settings. In the "Network" section, change the connection type to "Bridged Adapter" for each system so that the virtual machines can communicate with each other over the network. System Preparation Network Configuration Set the node names for the cluster. On the master node, execute the following command: sudo hostnamectl set-hostname master.local On the worker node, execute: sudo hostnamectl set-hostname worker.local If there are multiple worker nodes, assign each a unique name: worker1.local, worker2.local, and so on. To ensure that nodes are accessible by name, modify the hosts file on each node. Add the following lines: 192.168.43.80     master.local master192.168.43.77     worker.local worker Here, 192.168.43.80 and 192.168.43.77 are the IP addresses of each node. To find the IP address, use the ip addr command: ip addr Locate the IP address next to inet. Open the hosts file and make the necessary edits: sudo nano /etc/hosts To verify that the VMs can communicate with each other, ping the nodes: ping 192.168.43.80 If successful, you will receive a response similar to this: PING 192.168.43.80 (192.168.43.80) 56(84) bytes of data.64 bytes from 192.168.43.80: icmp_seq=1 ttl=64 time=0.054 ms Updating Packages and Installing Additional Utilities Next, install the necessary utilities and packages on each node. These steps should be applied to each node unless specified otherwise. Start by updating the package list and systems: sudo apt-get update && apt-get upgrade -y Then install the following packages: sudo apt-get install curl apt-transport-https git iptables-persistent -y Swap File Kubernetes will not start with an active swap file, so it needs to be disabled: sudo swapoff -a To prevent it from reactivating after a reboot, modify the fstab file: sudo nano /etc/fstab Comment out the line with #: # /swap.img      none    swap    sw      0       0 Kernel Configuration Load additional kernel modules: sudo nano /etc/modules-load.d/k8s.conf Add the following two lines to k8s.conf: br_netfilteroverlay Now, load the modules into the kernel: sudo modprobe br_netfiltersudo modprobe overlay Verify the modules are loaded successfully: sudo lsmod | egrep "br_netfilter|overlay" You should see output similar to this: overlay               147456  0br_netfilter           28672  0bridge                299008  1 br_netfilter Create a configuration file to process traffic through the bridge in netfilter: sudo nano /etc/sysctl.d/k8s.conf Add the following two lines: net.bridge.bridge-nf-call-ip6tables = 1net.bridge.bridge-nf-call-iptables = 1 Apply the settings: sudo sysctl --system Docker Installation Run the following command to install Docker: sudo apt-get install docker docker.io -y For more details on installing Docker on Ubuntu, refer to the official guide. After installation, enable Docker to start on boot and restart the service: sudo systemctl enable dockersudo systemctl restart docker Kubernetes Installation Add the GPG key: sudo curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add - Next, create a repository configuration file: sudo nano /etc/apt/sources.list.d/kubernetes.list Add the following entry: deb https://apt.kubernetes.io/ kubernetes-xenial main Update the apt-get package list: sudo apt-get update Install the following packages: sudo apt-get install kubelet kubeadm kubectl Installation is now complete. Verify the Kubernetes client version: sudo kubectl version --client  The output should be similar to this: Client Version: version.Info{Major:"1", Minor:"24", GitVersion:"v1.24.2"} Cluster Configuration Master Node Run the following command for the initial setup and preparation of the master node: sudo kubeadm init --pod-network-cidr=10.244.0.0/16 The --pod-network-cidr flag specifies the internal subnet address, with 10.244.0.0/16 being the default value. The process will take a few minutes. Upon completion, you will see the following message: Then you can join any number of worker nodes by running the following on each as root:kubeadm join 192.168.43.80:6443 --token f7sihu.wmgzwxkvbr8500al \--discovery-token-ca-cert-hash sha256:6746f66b2197ef496192c9e240b31275747734cf74057e04409c33b1ad280321 Save this command to connect the worker nodes to the master node. Create the KUBECONFIG environment variable: export KUBECONFIG=/etc/kubernetes/admin.conf Install the Container Network Interface (CNI): kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml Worker Node On the worker node, run the kubeadm join command obtained during the master node setup. After this, on the master node, enter: sudo kubectl get nodes The output should be: NAME                 STATUS      ROLES                        AGE    VERSIONmaster.local          Ready      control-plane,master          10m    v1.24.2worker.local          Ready      <none>                        79s    v1.24.2 The cluster is now deployed and ready for operation. Conclusion Setting up a Kubernetes cluster involves several steps, from creating and configuring virtual machines to installing and configuring the necessary software components. This tutorial provided a step-by-step guide to deploying a basic Kubernetes cluster on a local environment. While this setup is suitable for educational purposes, real-world deployments typically involve more nodes and more complex configurations. Kubernetes provides powerful tools for managing containerized applications, making it a valuable skill for modern IT professionals. By following this guide, you've taken the first steps in mastering Kubernetes and its ecosystem.
22 August 2024 · 7 min to read
Kubernetes

Running Kubernetes Clusters in the Cloud with VMware

Containerization is an effective way to deliver applications to customers. If your cloud IT infrastructure is deployed on VMware, you can use CSE, or Container Service Extension, to work with Kubernetes (K8s). This solution significantly accelerates the time from receiving code to deploying it in a production cloud system by automating the management (orchestration) of containers with the software. What is CSE? CSE is an extension to the VMware vCloud Director (VCD) platform that adds functionality for interacting with Kubernetes clusters—from creation to lifecycle management. Its installation allows for a comprehensive approach, integrating the management of both legacy and containerized applications within a single VMware infrastructure, while maintaining uniformity and a systematic management approach. Key features The CSE client facilitates cluster deployment, adds worker nodes, and configures NFS storage. A vCloud Director-based cloud offers high-security, multi-tenant (user-isolated) computing resources. The CSE server is a tool for configuring the configuration file and virtual machine templates. Creating and managing Kubernetes clusters in VMware is relatively complex, especially compared to tools like Docker Swarm, another cluster management tool for remote hosts. Kubernetes is often compared to vSphere, but the discussed platform offers more extensive functionality for managing a containerized IT infrastructure. This compensates for the drawbacks of a complex architecture and the high cost of the product. CSE Features The first thing the developers highlight about CSE is the ability to save on the already implemented VMware vCloud Director platform. All previously installed applications will continue to function as before (virtually invisible to the end client), while adding the ability to work with VMware Container. System resilience remains high regardless of traffic uniformity or platform load dynamics. Benefits of implementing the extension: A tool for managing clusters, node pools, and other resources. Significantly reduced time-to-market for any new developments. Increased availability of web resources, including cloud applications. Automatic server load distribution. Improved reliability and performance of CI/CD processes. The number of containers is unlimited as long as the physical server's resources (memory, CPU, etc.) are sufficient. This allows for parallel development of different projects that are initially isolated from each other. There are also no restrictions on the installed operating systems or programming languages. This is convenient when operating in an international market, even with just one physical server. Installing the CSE Extension in vcd-cli The vcd-cli (Command Line Interface) tool manages the infrastructure from the command line. By default, it does not support working with CSE. To enable it, you need to install the container-service-extension add-on: python3 -m pip install container-service-extension Next, you need to add the extension to the vcd-cli configuration file, located at ~/.vcd-cli/profiles.yaml. Open this file with a text editor and find the line active with the following value: extensions:- container_service_extension.client.cse After saving the changes to the configuration file, log in: vcd login <host> <organization_name> <login> Now, verify that the extension is indeed installed and actively interacting with the host: vcd cse versionCSE, Container Service Extension for VMware vCloud Director, version 3.0.1 vcd cse system infoproperty     value-----------  ------------------------------------------------------description  Container Service Extension for VMware vCloud Directorproduct      CSEversion      2.6.1 Creating a Kubernetes Cluster Next, let's look at activating a Kubernetes cluster within VMware. Integration with the vCloud Director platform allows managing the process from a single point in a familiar interface. Data center resources are typically pooled, and deployment is done through VM templates with pre-installed and pre-configured Kubernetes. You can create a cluster manually with the command: vcd cse cluster create <cluster_name> \        --network <network_name> \         --ssh-key ~/.ssh/id_rsa.pub \        --nodes <number_of_nodes> \        --template <template_name> The cluster and network names are mandatory. The rest are optional and will default if omitted. You can check the full list of active templates with the command: vcd cse template list The selected network must be of type Routed and connected to the internet. If either of these conditions is not met, the cluster initialization process will stall during the master node generation. You can use a "grey" network with NAT or Direct Connect technology. The result of the cluster creation will be visible in the vCloud Director platform's web interface, in the vApps section. After monitoring the status, the final step is to create a configuration file for Kubernetes. Generate it with the command: vcd cse cluster config <cluster_name> > config Then move the file to an appropriate location with the commands: mkdir ~/.kube/configcp config ~/.kube/config The cluster is now fully ready for use—from setting user parameters to deploying virtual machines, applications, and more. However, keep in mind that emulating containerization does have some limitations. Implementation Features For instance, the CSE extension does not support the LoadBalancer service type. Therefore, Kubernetes manifests using it (plus Ingress) will not work correctly. There are solutions to this drawback, and we'll discuss two of the most popular—MetalLB and Project Contour. MetalLB Using MetalLB with Kubernetes involves a load balancer that replaces cloud routing protocols with standard LB protocols. Here's an example of how to use it. 1) Create a namespace and add MetalLB using manifests: kubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.9.5/manifests/namespace.yamlkubectl apply -f https://raw.githubusercontent.com/metallb/metallb/v0.9.5/manifests/metallb.yaml 2) Next, configure node connection security. Without this, the transmitted pods will go into a CreateContainerConfigError status, and error messages such as secret memberlist not found will appear in the logs: kubectl create secret generic -n metallb-system memberlist --from-literal=secretkey="$(openssl rand -base64 128)" 3) Check the current status of the utility. If configured correctly, the controller and speaker will be displayed as running: kubectl get pod --namespace=metallb-system  NAME                          READY   STATUS    RESTARTS   AGEcontroller-57f648cb96-2lzm4   1/1     Running   0          5h52mspeaker-ccstt                 1/1     Running   0          5h52mspeaker-kbkps                 1/1     Running   0          5h52mspeaker-sqfqz                 1/1     Running   0          5h52m 4) Finally, manually create a configuration file: apiVersion: v1 kind: ConfigMap metadata:   namespace: metallb-system   name: config data:   config: |     address-pools:     - name: default       protocol: layer2       addresses:      - X.X.X.101-X.X.X.102 You should fill in the addresses parameter with the addresses that remain free and will handle the load balancing. Apply the configuration file: kubectl apply -f metallb-config.yaml The procedure for setting up a LoadBalancer for Kubernetes using MetalLB is complete; next is Ingress support, which is easier to implement with another tool. Project Contour Create a manifest with Project Contour using the command: kubectl apply -f https://projectcontour.io/quickstart/contour.yaml This command automatically deploys the Envoy proxy server, which listens on the standard ports 80 and 443. Conclusion Integrating Kubernetes into VMware with the Container Service Extension (CSE) unifies the management of legacy and containerized applications within VMware vCloud Director. While the setup may be complex, CSE enhances application deployment, scaling, and management, offering a resilient and scalable infrastructure. Despite some limitations, such as native LoadBalancer support, tools like MetalLB and Project Contour provide effective solutions. Overall, CSE empowers organizations to modernize their IT infrastructure, accelerating development and optimizing resources within a secure, multi-tenant cloud environment.
22 August 2024 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support