Sign In
Sign In

How to Remove Symbolic Links in Linux

How to Remove Symbolic Links in Linux
JC Brian Refugia
Technical writer
Linux
23.09.2024
Reading time: 8 min

Linux file systems are not complete without symbolic links, or "symlinks," which provide an adaptable means of referencing files and directories. As an alternative to a typical file copy, which makes a copy of the entire file, a symbolic link points to the location of another file or directory without taking up extra space on the disc. When files must be readily available from several locations or when users or system administrators want many references to a single file, this functionality becomes quite helpful. Symbolic connections are more versatile than hard links because they can span many file systems and partitions.

Linux users can improve system organization, streamline file management, and prevent needless file duplication by employing symbolic links. In-depth discussion of symbolic link generation, usage, and possible advantages in routine Linux activities will be provided in this article.

Difference Between Hard Links and Symbolic Links

Both hard links and symbolic links, or symlinks, offer methods for referencing files under Linux, however, they function differently and have different uses. Comprehending the distinctions between these two categories of connections is imperative for effective file administration and system arrangement.

In essence, a hard link is an explicit reference to a file's actual physical contents on the disc. The file system data structure known as the inode, which holds information about the location of the file, is the destination that a hard link links to when it is established. Eliminating one hard link to a file does not impact the others or the content of the original file because several hard links to the same file are indistinguishable from each other. Hard links cannot reference folders and must live on the same file system as the original file. 

A symbolic link, on the other hand, stores the path to the destination and functions as a pointer or shortcut to the original file or directory. Because they can connect to files or directories on various file systems and even point to directories, symbolic links are more versatile than hard links. Symbolic links, however, require the target file to be present. The symbolic link gets "broken" and stops working if the target is removed or moved since it points to an invalid location.

The following are the primary key differences between Hard Links and Symbolic Links.

  • The files that are referenced by hard links can only be found within the same file system, whereas symbolic links can traverse several file systems and external discs.

  • As long as one hard link survives, all other links to the file will continue to work even if the original is removed. On the other hand, symbolic links require the original file or directory to be present.

  • Hard links are effectively duplicates of the file without consuming extra storage because they make direct references to its contents. Symbolic links take up less space because they just save the path to the source file; however, they run the risk of being invalid if the file structure changes.

  • Symbolic links can point to directories, but hard links cannot.

In summary, symbolic links allow flexibility, particularly when working with files or directories across various file systems, while hard links provide a more reliable approach to keep file references without having to worry about path dependencies. Based on the particular use case and file management requirements, users might choose between the two.

Identifying Symbolic Links in the File System

There are a number standard techniques, most involving terminal commands, that make it simple to identify symbolic connections. 

  1. Using the ls command with the -l option is one of the easiest ways to discover a symlink. This will show comprehensive details, such as permissions and type, regarding files and directories.  See below example:

SYNTAX:

ls –l <filename>

EXAMPLE:

ls –l myfilename

Image2

An l (lowercase L) at the start of the permission string and the symlink's reference to the target file or directory is indicated by an arrow (->) indicates symbolic links in the output, as shown in the example above.

  1. The file command, which yields details about the content of each file, is an additional tool for identifying symbolic links. The output will clearly indicate that a link is symbolic and provide the target path when it is used on a symbolic link.

SYNTAX:

file <filename>

EXAMPLE:

file target_path_name

Image1

By default, the file package is not installed. It can be readily installed using the system's package manager, depending on the distribution in use.

Debian/Ubuntu-Based Systems:

sudo apt install file

Red Hat/CentOS/Fedora-Based Systems:

sudo yum install file
  1. The readlink command is useful for users who want to confirm the actual target of a symbolic link. It returns the target path of the symbolic link without any additional information.

SYNTAX:

readlink <filename>

EXAMPLE:

readlink target_path_name

Image5

Removing Symbolic Links with rm Command

The recommended way to remove symbolic links is to use the rm command. The fact that the symlink can be deleted without impacting the file or directory it points to is one of its main benefits. It's simple to remove a symbolic link using the command below.

SYNTAX:

rm <symbolic_file>

EXAMPLE:

rm target_path_name

The target file is unaffected by this command, just the symbolic link is deleted. The same procedure can be used to remove a symbolic link using the rm command if its target no longer exists, or if the symbolic link becomes broken.

Verifying Removal of Symbolic Links

The ls command can be used to list files and directories in the current directory, confirming that the symbolic link has been properly removed. It has been successfully deleted if the symbolic link removes.

SYNTAX:

ls –l <filename>

EXAMPLE:

ls –l myfilename

Image4

Symbolic links are indicated in the output by an l (for "link") at the start of the permissions string. The symbolic link has been successfully deleted if it is no longer visible in the list.

Handling Errors When Removing Symbolic Links

Although the procedure of eliminating symbolic links in Linux is usually simple, users may sometimes run into problems. These mistakes may be the result of faulty or nonexistent links, permission problems, or improper syntax. File administration in a Linux system runs more smoothly when user know what common causes mistakes and how to fix them. Below are most common issue that may encounter.

  1. "Permission denied" is one of the most frequent errors that occur while trying to erase a symbolic link. When a user lacks the necessary rights to remove a symlink or access the directory containing it, this happens. Users can use the sudo command to elevate their privileges and temporarily grant administrator rights in order to fix this problem.

  2. Links that point to nonexistent files or folders are known as broken symbolic links. Although fixing a damaged symlink should usually be the same as fixing any other symlink, users could run into problems if the path has changed. In these situations, the broken link itself can still be removed with the rm command, but it's crucial to make sure the link's name and location are entered correctly.

  3. "No Such File or Directory" Error: This error usually arises when the user enters the incorrect file name or when the symbolic link intended for removal does not exist. Users should make sure that the symbolic link is being utilised with the correct name in order to resolve this issue. Users can verify the symlink's name by using the ls -l command, which can be useful in identifying all files and symbolic links in the directory.

  4. When a user uses the -r (recursive) flag to remove a symbolic link to a directory, users could experience an unexpected outcome where the directory contents are erased instead of simply the symbolic link. It's crucial to refrain from erasing symbolic links to folders with the -r option.

To sum up, resolving issues during the removal of symbolic links usually entails verifying the file name accuracy, assessing the present status of the file system, and examining permissions. Through the resolution of these possible problems, users can efficiently handle symbolic connections and prevent disturbances in their Linux environment.

Conclusion

Within the Linux file system, symbolic links are an incredibly useful and adaptable feature that let users establish shortcuts and references to files and directories. Whether they are used to handle broken files, generate cross-directory linkages, or simplify file administration, symlinks offer an effective means of streamlining processes without repeating data.

The primary features of symbolic links have been emphasized throughout this article, along with how they differ from hard links, how to build and maintain them, and how to fix typical removal issues. Users of Linux and system administrators can optimize system speed and file system organization by effectively utilizing symbolic connections.

Like any other Linux feature, using symbolic links correctly in both simple and complicated environments depends on your knowledge of their complexity. Users will be able to confidently add symbolic links into their daily activities with this knowledge, which will improve file handling and overall system organization.

You can try our reliable Linux VPS for your projects. 

Linux
23.09.2024
Reading time: 8 min

Similar

Linux

How to Find a File in Linux

In Unix-like operating systems, a file is more than just a named space on a disk. It is a universal interface for accessing information. A Linux user should know how to quickly find the necessary files by name and other criteria.  The locate Command The first file search command in Linux that we will look at is called locate. It performs a fast search by name in a special database and outputs all names matching the specified substring. Suppose we want to find all programs that begin with zip. Since we are looking specifically for programs, it is logical to assume that the directory name ends with bin. Taking this into account, let’s try to find the necessary files: locate bin/zip Output: locate performed a search in the pathname database and displayed all names containing the substring bin/zip. For more complex search criteria, locate can be combined with other programs, for example, grep: locate bin | grep zip Output: Sometimes, in Linux, searching for a file name with locate works incorrectly (it may output names of deleted files or fail to include newly created ones). In such a case, you need to update the database of indexes: sudo updatedb locate supports wildcards and regular expressions. If the string contains metacharacters, you pass a pattern instead of a substring as an argument, and the command matches it against the full pathname. Let’s say we need to find all names with the suffix .png in the Pictures directory: locate '*Pictures/*.png' Output: To search using a regular expression, the -r option is used (POSIX BRE standard): locate -r 'bin/\(bz\|gz\|zip\)' The find Command find is the main tool for searching files in Linux through the terminal. Unlike locate, find allows you to search files by many parameters, such as size, creation date, permissions, etc. In the simplest use case, we pass the directory name as an argument and find searches for files in this directory and all of its subdirectories. If you don’t specify any options, the command outputs a list of all files.  For example, to get all names in the home directory, you can use: find ~ The output will be very large because find will print all names in the directory and its subdirectories.  To make the search more specific, use options to set criteria. Search Criteria Suppose we want to output only directories. For this, we will use the -type option: find ~/playground/ -type d Output: This command displayed all subdirectories in the ~/playground directory. Supported types are: b — block device c — character device d — directory f — regular file l — symbolic link We can also search by size and name. For example, let’s try to find regular files matching the pattern .png and larger than one kilobyte: find ~ -type f -name "*.png" -size +1k Output: The -name option specifies the name. In this example, we use a wildcard pattern, so it is enclosed in quotes. The -size parameter restricts the search by size. A + sign before the number means we are looking for files larger than the given size, a - sign means smaller. If no sign is present, find will display only files exactly matching the size. Symbols for size units: b — 512-byte blocks (default if no unit is specified) c — bytes w — 2-byte words k — kilobytes M — megabytes G — gigabytes find supports a huge number of checks that allow searching by various criteria. You can check them all in the documentation. Operators Operators help describe logical relationships between checks more precisely.  Suppose we need to detect insecure permissions. To do this, we want to output all files with permissions not equal to 0600 and all directories with permissions not equal to 0700. find provides special logical operators to combine such checks: find ~ \( -type f -not -perm 0600 \) -or \( -type d -not -perm 0700 \) Supported logical operators: -and / -a — logical AND. If no operators are specified between checks, AND is assumed by default. -or / -o — logical OR. -not / ! — logical NOT. ( ) — allows grouping checks and operators to create complex expressions. Must be escaped. Predefined Actions We can combine file search with performing actions on the found files. There are predefined and user-defined actions. For the former, find provides the following options: -delete — delete found files -ls — equivalent to ls -dils -print — output the full file name (default action) -quit — stop after the first match Suppose we need to delete all files with the .bak suffix. Of course, we could immediately use find with the -delete option, but for safety it’s better to first output the list of files to be deleted, and then remove them: find ~ -type f -name '*.bak' -print Output: After verification, delete them: find ~ -type f -name '*.bak' -delete User-defined Actions With user-defined actions, we can combine the search with using various Linux utilities: -exec command '{}' ';' Here, command is the command name, {} is the symbolic representation of the current pathname, and ; is the command separator. For example, we can apply the ls -l command to each found file: find ~ -type f -name 'foo*' -exec ls -l '{}' ';' Output: Sometimes commands can take multiple arguments at once, for example, rm. To avoid applying the command separately to each found name, put a + at the end of -exec instead of a separator: find ~ -type f -name 'foo*' -exec ls -l '{}' + Output: A similar task can be done using the xargs utility. It takes a list of arguments as input and forms commands based on them. For example, here’s a well-known command for outputting files that contain “uncomfortable” characters in their names (spaces, line breaks, etc.): find ~ -iname '*.jpg' -print0 | xargs --null ls -l The -print0 argument forces found names to be separated by the null character (the only character forbidden in file names). The --null option in xargs indicates that the input is a list of arguments separated by the null character. Conclusion In Linux, searching for a file by name is done using the locate and find commands. Of course, you can also use file managers with a familiar graphical interface for these purposes. However, the utilities we have considered help make the search process more flexible and efficient.
22 August 2025 · 5 min to read
Java

Switching between Java Versions on Ubuntu

Managing multiple Java versions on Ubuntu is essential for developers working on diverse projects. Different applications often require different versions of the Java Development Kit (JDK) or Java Runtime Environment (JRE), making it crucial to switch between these versions efficiently. Ubuntu provides powerful tools to handle this, and one of the most effective methods is using the update-java-alternatives command. Switching Between Java Versions In this article, the process of switching between Java versions using updata-java-alternatives will be shown. This specialized tool simplifies the management of Java environments by updating all associated commands (such as java, javac, javaws, etc.) in one go.  Overview of Java version management A crucial component of development is Java version control, especially when working on many projects with different Java Runtime Environment (JRE) or Java Development Kit (JDK) needs. In order to prevent compatibility problems and ensure efficient development workflows, proper management ensures that the right Java version is utilized for every project. Importance of using specific Java versions You must check that the Java version to be used is compatible with the application, program, or software running on the system. Using the appropriate Java version ensures that the product runs smoothly and without any compatibility issues. Newer versions of Java usually come with updates and security fixes, which helps protect the system from vulnerabilities. Using an out-of-date Java version may expose the system to security vulnerabilities. Performance enhancements and optimizations are introduced with every Java version. For maximum performance, use a Java version that is specific to the application. Checking the current Java version It is important to know which versions are installed on the system before switching to other Java versions.  To check the current Java version, the java-common package has to be installed. This package contains common tools for the Java runtimes including the update-java-alternatives method. This method allows you to list the installed Java versions and facilitates switching between them. Use the following command to install the java-common package: sudo apt-get install java-common Upon completing the installation, verify all installed Java versions on the system using the command provided below: sudo update-java-alternatives --list The report above shows that Java versions 8 and 11 are installed on the system. Use the command below to determine which version is being used at the moment. java -version The displayed output indicates that the currently active version is Java version 11. Installing multiple Java versions Technically speaking, as long as there is sufficient disk space and the package repositories support it, the administrator of Ubuntu is free to install as many Java versions as they choose. Follow the instructions below for installing multiple Java versions. Begin by updating the system using the following command:   sudo apt-get update -y && sudo apt-get upgrade -y To add another version of Java, run the command below. sudo apt-get install <java version package name> In this example, installing Java version 17 can be done by running:  sudo apt-get install openjdk-17-jdk openjdk-17-jre Upon completing the installation, use the following command to confirm the correct and successful installation of the Java version: sudo update-java-alternatives --list Switching and setting the default Java version To switch between Java versions and set a default version on Ubuntu Linux, you can use the update-java-alternatives command.  sudo update-java-alternatives --set <java_version> In this case, the Java version 17 will be set as default: sudo update-java-alternatives --set java-1.17.0-openjdk-amd64 To check if Java version 17 is the default version, run the command:  java -version The output shows that the default version of Java is version 17. Managing and Switching Java Versions in Ubuntu Conclusion In conclusion, managing multiple Java versions on Ubuntu Linux using update-java-alternatives is a simple yet effective process. By following the steps outlined in this article, users can seamlessly switch between different Java environments, ensuring compatibility with various projects and taking advantage of the latest features and optimizations offered by different Java versions. Because Java version management is flexible, developers may design reliable and effective Java apps without sacrificing system performance or stability.
22 August 2025 · 4 min to read
Linux

Linux cp Command

Linux has an unlimited set of commands to perform assigned tasks. The Linux cp command is the primary tool and the basis for copying and managing files and directories in this operating system. This function is designed to duplicate files or directories in the same or different location. Armed with this functionality, users have advanced capabilities: from creating backup copies to moving files between directories. Linux cp command is simple to learn You can find all the necessary information covered in this tutorial. You will discover how the Linux cp command and cp directory work, as well as its grammatical structures, crucial hints, parameters, settings, and recommended practices. Readers will learn the tricks of the cp command, which will help them become more proficient. You can try our Linux VPS hosting for your projects. The core of the cp command in Linux The functionality of the command allows users to control the creation of copies. One feature offers overwriting existing files, another is responsible for recursively copying a directory with its entire entities, and the third protects the first data for repeating backups. This command demonstrates more features for specific purposes and user experience during the process. A key benefit of the cp command is its exceptional accuracy in duplicating files and directories. You can be absolutely sure that the duplicated files are identical to the original ones with all its interior. Therefore, the user can replicate the original file without any changes. The cp command in Linux inherently tells the user a destination directory for storing copies in a specific repository. The command's precision makes it indispensable for both novice and advanced users. Linux cp syntax This command consists of the following parameters: source file or directory and destination directory. The basic syntax of the Linux cp command is as follows: cp [...file/directory-sources] [destination] Here [file/directory-sources] specifies the files or directories sources to copy, while the [destination] specifies the location to copy the file to. There are the letter flags to specify the way of creation a replica of files and directories: -a leaves the first file attributes the same; -r recursively replicates directories and their interior entities; -v shows copied files in detail; -i requires consent to overwrite the file; -u rewrites new or missing files in the destination directory; -f forcibly copies without user consent; -s makes a symbolic link instead of a file replica; -ra recreates an exact duplicate of a file or directory without changing attributes; -rf updates or changes a file or directory with the original name in the same place; -pv (if installed) monitors and shows the time required to complete copying large folders. How to copy files with the cp command To make a file copy, apply the cp command in Linux as follows: cp ./DirectoryA_1/README.txt ./DirectoryA_2 where ./DirectoryA_1/README.txt is the source file, and ./DirectoryA_2 is the destination. The cp command was originally designed to interact with files. To replicate directories, you must use the -r flag to command that the directory with all its interior entities to be copied recursively. Therefore, you should write cp -r before the directory sources in Linux as follows: cp -r ./DirectoryA_1/Folder/ ./DirectoryA_2 The cp -r command in Linux will recursively duplicate the Folder directory in ./DirectoryA_1/ as well as all contents in the Folder directory. For instance, if you need to replicate the whole file contents in DirectoryA_1 with the .txt extension, try following command: cp ./DirectoryA_1/*.txt ./DirectoryA_2 where ./DirectoryA_1/*.txt matches files with the .txt extension in their names, and the cp command duplicates all those data to the destination. Best practices of the cp Linux command To duplicate one unit of information via the Linux cp command, write down the file name and destination directory. For instance, to replicate a file named example.txt to the 'Documents' directory, try the following command: cp example.txt Documents/ The action leads to creating a file duplicate in the 'Documents' directory with the original name. To copy multiple files at once, utilize the cp command in Linux, specifying the file names separated by a space. For instance, to duplicate three files named 'file1.txt', 'file2.txt', and 'file3.txt' to the 'Documents' directory, try the following command: cp file1.txt file2.txt file3.txt Documents/ To replicate a directory with all its interior entities, apply the -r that means cp recursive feature in Linux. For instance, to duplicate a directory named 'Pictures' to the 'Documents' directory, try the following command: cp -r Pictures Documents/ The action leads to creating a copy of the 'Pictures' directory with all its interior contents in the 'Documents' directory. To replicate a folder in Linux, you should utilize the -r flag. For instance, to duplicate a folder named 'Pictures' from the existing directory to a folder named 'Photos' in the home directory, try the following command: cp -r Pictures/ ~/Photos/ The destination folder will be created automatically if none exists. The files in the destination folder will be combined with the core of the source folder if one already exists. The cp -a feature in Linux leaves unchanged the initial file attributes while copying. Therefore, the duplicates will have the same parameters as their originals. For instance, to replicate a file named 'example.txt' to the 'Documents' directory while leaving unchanged its attributes, try the following command: cp -a example.txt Documents/ The Linux cp -v function showcases the progress of the duplication. At the same time the user can copy large files while monitoring the process. For instance, to replicate a file named 'largefile.zip' to the 'Downloads' directory while watching the progress, try the following command: cp -v largefile.zip Downloads/ The -i option requires the consent before overwriting an initial file. to protect against an accidental file rewriting. For instance, to duplicate a file named 'example.txt' to the 'Documents' directory, if a file with the identical name already exists, the cp command will require the consent before rewriting the original file. Initially, the Linux cp command copies a file or a directory to a default location. The system allows the user to specify any other location for the duplicate file or directory. For instance, to replicate a file named 'example.txt' from the 'Documents' directory to the 'Downloads' directory, try the following command: cp Documents/example.txt Downloads/ The cp -ra function in Linux is designed to carry out the copying process of directories with all their contents inside. The -r flag gives an order to repeat all the files and directories within an existing location, while the -a flag keeps the initial attributes preserved. Therefore, it is possible to make an exact duplicate of a directory without changing attributes. For instance, if you apply the command cp -ra /home/user1/documents /home/user2, it will replicate the 'documents' directory with all its entities inside in the 'user2' directory. The new folder will show the identical attributes as the initial item. The cp -rf feature in Linux is similar to the previous -ra option. The difference between these two functions is that the -f flag rewrites the given files or directories in the destination without requiring consent. Therefore, it is possible to update or replace an item with the identical name in the place of destination. For instance, if you apply the command cp -rf /home/user1/documents /home/user2, and there is already a 'documents' directory in the 'user2' directory, it will be overwritten with the contents of the 'documents' directory from the 'user1' directory. Be careful while utilizing the -rf function. Incorrect use of it leads to data loss. Check up twice the destination folder to avoid unwanted rewriting items. It is simpler to work with files and directories when you use Linux's cp -r capability with the -a and -f settings. Whereas the -rf particle modifies or replaces files and directories, the -ra particle precisely copies a directory and everything within it. You can learn how to handle stuff in this operating system by properly applying these differences. If you want to monitor and control the process of item duplication, which is not possible with other parameters of the cp command, use the -pv utility. To install the pv utility on Debian/Ubuntu you need to open the terminal and run the following command:  apt-get install pv After the installation is complete, verify it by running the following command in the terminal pv --version To install the pv utility on CentOS/Fedora, you need to connect the EPEL repository, which contains additional software packages unavailable in the default repositories. Run in the terminal: yum install epel-release Then run the following command in the terminal:  yum install pv  After the installation is complete, verify it by running the following command in the terminal:  pv --version To use this particle with the cp command, you should utilize | symbol. You can use the ~ symbol to indicate the root directory if the full path needs to be specified. For instance, to replicate a folder named 'Documents' from the root directory to a folder named 'Backup' in the home directory, try the following action: cp -r Documents/ ~/Backup/ | pv Example of executed Linux cp command Conclusion The cp command, although not an inherently difficult tool to learn, nevertheless provides basic knowledge of using the Linux operating system in terms of managing files and directories. In this tutorial, we tried to show the capabilities of the cp command in Linux from all sides, demonstrating best practices and useful tips of its various parameters. With new knowledge, you will be able to improve your skills in interacting with files and directories in Linux. The extreme accuracy of the copying process and additional options allow you to solve a wide range of problems. Multifunctionality helps users choose the file management mode and complete tasks efficiently. The command is a prime example of the many capabilities of this operating system, including the cp with progress feature in Linux. Altogether they unlock a potential of the system for novice and advanced users.
22 August 2025 · 9 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support