ClickHouse is an open-source column-oriented database management system developed by Yandex, designed for real-time analytical processing of large volumes of data. It is specifically optimized for online analytical processing (OLAP) workloads, making it ideal for applications requiring fast analytical queries on vast datasets.
Before proceeding with the installation, ensure that your system meets the following requirements:
Ubuntu operating system (latest LTS version recommended for stability)
Minimum 2GB RAM (4GB or more recommended)
Adequate disk space for data storage
Open a terminal window and update the package lists by running the following command:
sudo apt update
Use the following command to install ClickHouse on your Ubuntu system:
sudo apt-get install -y apt-transport-https ca-certificates curl gnupg
curl -fsSL 'https://packages.clickhouse.com/rpm/lts/repodata/repomd.xml.key' | sudo gpg --dearmor -o /usr/share/keyrings/clickhouse-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/clickhouse-keyring.gpg] https://packages.clickhouse.com/deb stable main" | sudo tee \
/etc/apt/sources.list.d/clickhouse.list
sudo apt-get update
Once the installation is complete, start the ClickHouse server with the following command:
sudo apt-get install -y clickhouse-server clickhouse-client
To verify that ClickHouse has been installed successfully, check its status by executing:
sudo service clickhouse-server start
Launch the ClickHouse client by typing the following command in your terminal:
clickhouse-client
Inside the ClickHouse client, create a new database using the following SQL command:
CREATE DATABASE my_database;
Then use the command use database
:
USE my_database;
This command selects my_database
as the current database to execute further commands within.
Here's an example of how to create a table within the database. Suppose we want to create a table named my_table
with the following columns: id
(UInt32), name
(String), and age
(UInt8).
CREATE TABLE my_table
(
id UInt32,
name String,
age UInt8
)
ENGINE = MergeTree()
ORDER BY id;
This command creates a table named my_table
with three columns (id
, name
, and age
). The MergeTree
engine is used, which is suitable for large datasets. The ORDER BY id
clause specifies that the data will be ordered by the id
column, which is often used to optimize query performance.
To insert data into a ClickHouse table, use the INSERT INTO
SQL statement. For example:
INSERT INTO my_table (column1, column2) VALUES (1, 'value1');
Retrieve data from a table using the SELECT
SQL statement. Here's an example:
SELECT * FROM my_table;
To delete rows from a ClickHouse table, use the DELETE
SQL statement. When using the DELETE
statement in ClickHouse, you need to specify conditions that determine which rows will be deleted. These conditions can be based on various comparisons and logical operations. Here are examples of different types of conditions and the corresponding SQL commands to delete rows from my_table
.
Delete rows where column1
is equal to 1.
ALTER TABLE my_table DELETE WHERE column1 = 1;
Delete rows where column1
is not equal to 1.
ALTER TABLE my_table DELETE WHERE column1 != 1;
Delete rows where column1
is greater than 2.
ALTER TABLE my_table DELETE WHERE column1 > 2;
Delete rows where column1
is less than 3.
ALTER TABLE my_table DELETE WHERE column1 < 3;
Delete rows where column1
is greater than or equal to 3.
ALTER TABLE my_table DELETE WHERE column1 >= 3;
Delete rows where column1
is less than or equal to 2.
ALTER TABLE my_table DELETE WHERE column1 <= 2;
Delete rows where column2
is equal to value1
.
ALTER TABLE my_table DELETE WHERE column2 = 'value1';
Delete rows where column1
is between 2 and 4.
ALTER TABLE my_table DELETE WHERE column1 BETWEEN 2 AND 4;
Delete rows where column1
is greater than 2 and column2
is value3
.
ALTER TABLE my_table DELETE WHERE column1 > 2 AND column2 = 'value3';
Delete rows where column1
is less than 2 or column2
is value5
.
ALTER TABLE my_table DELETE WHERE column1 < 2 OR column2 = 'value5';
Delete rows where column2
is NULL
(assuming column2
can be NULL
).
ALTER TABLE my_table DELETE WHERE column2 IS NULL;
Update existing records in a ClickHouse table with the UPDATE
SQL statement:
UPDATE my_table SET column1 = value1 WHERE condition;
Let's expand on each section with detailed explanations and error-free code snippets.
Implement materialized views for efficient data aggregation. Create a materialized view with the following SQL command:
CREATE MATERIALIZED VIEW my_materialized_view ENGINE = MergeTree() AS SELECT * FROM my_table;
Utilize partitioning to manage and query large datasets effectively. Create a partitioned table using the following SQL syntax:
CREATE TABLE my_partitioned_table
(
column1 Date,
column2 String
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(column1)
ORDER BY column1;
Monitor ClickHouse performance using built-in metrics and tools. Access the ClickHouse system tables to view performance metrics:
SELECT * FROM system.metrics;
To back up ClickHouse data to a local disk, follow these steps:
First, you need to set up the backup destination by creating a configuration file /etc/clickhouse-server/config.d/backup_disk.xml
. This file specifies the local storage path for backups. Paste the following into the backup_disk.xml
file:
<clickhouse>
<storage_configuration>
<disks>
<backups>
<type>local</type>
<path>/backups/</path>
</backups>
</disks>
</storage_configuration>
<backups>
<allowed_disk>backups</allowed_disk>
<allowed_path>/backups/</allowed_path>
</backups>
</clickhouse>
Use the BACKUP
SQL statement to back up a table. Specify the destination as a local disk.
BACKUP TABLE my_table TO Disk('backups', 'backup_name.zip');
To restore a table from a backup, use the RESTORE
SQL statement.
RESTORE TABLE my_table FROM Disk('backups', 'backup_name.zip');
SETTINGS allow_non_empty_tables=true
In case if the empty tables are needed to be restored then the line SETTINGS allow_non_empty_tables=true
is not needed in the command.
Incremental backups can be performed to save only the changes since the last backup.
BACKUP TABLE my_table TO Disk('backups', 'incremental.zip')
SETTINGS base_backup = Disk('backups', 'base_backup.zip');
Protect your backups with a password for added security.
BACKUP TABLE my_table TO Disk('backups', 'protected_backup.zip')
SETTINGS password='your_password';
These steps ensure a reliable and secure backup and restore process using ClickHouse's native tools. For more detailed information, visit the ClickHouse documentation.
Analyze ClickHouse logs to identify and troubleshoot issues. Review ClickHouse log files located in /var/log/clickhouse-server/
for error messages and warnings.
Seek assistance from the ClickHouse community for resolving complex problems. Join ClickHouse forums and mailing lists to ask questions and seek advice from experienced users.
And do not forget to check ClickHouse Docs for better understanding.