Sign In
Sign In

How to Install and Set Up PyTorch

How to Install and Set Up PyTorch
Hostman Team
Technical writer
Python
01.04.2025
Reading time: 9 min

PyTorch is a free, open-source deep learning library. With its help, a computer can detect objects, classify images, generate text, and perform other complex tasks.

PyTorch is also a rich tool ecosystem that supports and accelerates AI development and research. In this article, we will cover only the basics: we will learn how to install PyTorch and verify that it works.

To work with PyTorch, you will need:

  • At least 1 GB of RAM.
  • Installed Python 3 and pip. 
  • A configured local development environment.

Deep knowledge of machine learning is not required for this tutorial. It is assumed that you are familiar with basic Python terms and concepts.

Installing PyTorch

We will be working in a Windows environment but using the command line. This makes the tutorial almost universal—you can use the same commands on Linux and macOS.

First, create a workspace where you will work with Torch Python.

Navigate to the directory where you want to place the new folder and create it:

mkdir pytorch

Inside the pytorch directory, create a new virtual environment. This is necessary to isolate projects and, if needed, use different library versions.

python3 -m venv virtualpytorch

To activate the virtual environment, first go to the newly created directory:

cd virtualpytorch

Inside, there is a scripts folder (on Windows) or bin (on other OS). Navigate to it:

cd scripts

Activate the virtual environment using a bat file by running the following command in the terminal:

activate.bat

The workspace is now ready. The next step is to install the PyTorch library.

The easiest way to find the installation command is to check the official website. There is a convenient form where you select the required parameters.

As an example, install the stable version for Windows using CPU via pip. Select these parameters in the form, and you will get the necessary command:

pip3 install torch torchvision torchaudio

Copy and execute the pip install torch command in the Windows command line. You are also installing two sub-libraries:

  • torchvision – contains popular datasets, model architectures, and image transformations for computer vision.
  • torchaudio – a library for processing audio and signals using PyTorch, providing input/output functions, signal processing, datasets, model implementations, and application components.

This is the standard setup often used when first exploring the library.

The method described above is not the only way to install PyTorch. If Anaconda is installed on Windows, you can use its graphical interface. If your computer has NVIDIA GPUs, you can select the CUDA version instead of CPU. In that case, the installation command will be different.

All possible local installation methods are listed in the official documentation. You can also find commands for installing older versions of the library there. To install them, just select the required version and install it the same way as the current package builds.

You don't need to write a script to check if the library is working. The Python interpreter has enough capabilities to perform basic operations.

If you have successfully installed PyTorch in the previous steps, then launching the Python interpreter won’t be an issue. Run the following command in the command line:

python

Then enter the following code:

import torch
x = torch.rand(5, 3)
print(x)

You should see an output similar to this:

tensor([[0.0925, 0.3696, 0.4949],  
        [0.0240, 0.2642, 0.1545],  
        [0.7274, 0.4975, 0.0753],  
        [0.4438, 0.9685, 0.5022],  
        [0.4757, 0.6715, 0.4298]])

Now, you can move on to solving more complex tasks.

PyTorch Usage Example

To make learning basic concepts more engaging, let’s do it in practice. For example, let’s create a neural network using PyTorch that can recognize the digit shown in an image.

Prerequisites

To create a neural network, we need to import eight modules:

import torch
import torchvision
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets

All of these are standard PyTorch libraries plus Matplotlib. They handle image processing, optimization, neural network construction, and graph visualization.

Loading and Transforming Data

We will train the neural network on the MNIST dataset, which contains 70,000 images of handwritten digits.

  • 60,000 images will be used for training.
  • 10,000 images will be used for testing.
  • Each image is 28 × 28 pixels.
  • Each image has a label representing the digit (e.g., 1, 2, 5, etc.).
train = datasets.MNIST("", train=True, download=True,
                      transform=transforms.Compose([transforms.ToTensor()]))
test = datasets.MNIST("", train=False, download=True,
                      transform=transforms.Compose([transforms.ToTensor()]))

trainset = torch.utils.data.DataLoader(train, batch_size=15, shuffle=True)
testset = torch.utils.data.DataLoader(test, batch_size=15, shuffle=True)

First, we divide the data into training and testing sets by setting train=True/False.

The test set must contain data that the machine has not seen before. Otherwise, the neural network’s performance would be biased.

Setting shuffle=True helps reduce bias and overfitting.

Imagine that the dataset contains many consecutive "1"s. If the machine gets too good at recognizing only the digit 1, it might struggle to recognize other numbers. Shuffling the data prevents the model from overfitting specific patterns and ensures a more generalized learning process.

Definition and Initialization of the Neural Network

The next step is defining the neural network:

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 86)
        self.fc2 = nn.Linear(86, 86)
        self.fc3 = nn.Linear(86, 86)
        self.fc4 = nn.Linear(86, 10)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return F.log_softmax(x, dim=1)

model = NeuralNetwork()

The neural network consists of four layers: one input layer, two hidden layers, and one output layer. The Linear type represents a simple neural network.

For each layer, it is necessary to specify the number of inputs and outputs. The output number of one layer becomes the input for the next layer.

  • The input layer has 784 nodes. This is the result of multiplying 28 × 28 (the image size in pixels).
  • The first hidden layer has 86 output nodes, so the input to the next layer must be 86 as well.
    The same logic applies further. 86 is an arbitrary number—you can use a different value.
  • The output layer contains 10 nodes because the images represent digits from 0 to 9.

Each time data passes through a layer, it is processed by an activation function.

There are several activation functions. In this example, we use ReLU (Rectified Linear Unit). This function returns 0 if the value is negative or the value itself if it is positive.

The softmax function is used at the output layer to normalize values. For example, it might return an 80% probability that the digit in the image is 1, or a 30% probability that the digit is 5, and so on. The highest probability is selected as the final prediction.

Training

The next step is training.

optimizer = optim.Adam(model.parameters(), lr=0.001)
EPOCHS = 3
for epoch in range(EPOCHS):
    for data in trainset:
        X, y = data
        model.zero_grad()
        output = model(X.view(-1, 28 * 28))
        loss = F.nll_loss(output, y)
        loss.backward()
        optimizer.step()
    print(loss)

The optimizer calculates the difference (loss) between the actual data and the prediction, adjusts the weights, recalculates the loss, and continues the cycle until the loss is minimized.

Training Verification

Here, we compare the actual values with the predictions made by the model. For this tutorial, the accuracy is high because the neural network effectively recognizes each digit.

correct = 0
total = 0
with torch.no_grad():
    for data in testset:
        data_input, target = data
        output = model(data_input.view(-1, 784))
        for idx, i in enumerate(output):
            if torch.argmax(i) == target[idx]:
                correct += 1
            total += 1

print('Accuracy: %d %%' % (100 * correct / total))

To verify that the neural network works, pass it an image of a digit from the test set:

plt.imshow(X[1].view(28,28))
plt.show()

print(torch.argmax(model(X[1].view(-1, 784))[0]))

The output should display the digit shown in the provided image.

Final Script

Here’s the full script you can run to see how the neural network works:

import torch
import torchvision
import torch.nn.functional as F
import matplotlib.pyplot as plt
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets

train = datasets.MNIST("", train=True, download=True,
                      transform = transforms.Compose([transforms.ToTensor()]))
test = datasets.MNIST("", train=False, download=True,
                      transform = transforms.Compose([transforms.ToTensor()]))

trainset = torch.utils.data.DataLoader(train, batch_size=15, shuffle=True)
testset = torch.utils.data.DataLoader(test, batch_size=15, shuffle=True)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(784, 86)
        self.fc2 = nn.Linear(86, 86)
        self.fc3 = nn.Linear(86, 86)
        self.fc4 = nn.Linear(86, 10)

    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
        x = self.fc4(x)
        return F.log_softmax(x, dim=1)

model = NeuralNetwork()

optimizer = optim.Adam(model.parameters(), lr=0.001)
EPOCHS = 3
for epoch in range(EPOCHS):
    for data in trainset:
        X, y = data
        model.zero_grad()
        output = model(X.view(-1, 28 * 28))
        loss = F.nll_loss(output, y)
        loss.backward()
        optimizer.step()
    print(loss)

correct = 0
total = 0
with torch.no_grad():
    for data in testset:
        data_input, target = data
        output = model(data_input.view(-1, 784))
        for idx, i in enumerate(output):
            if torch.argmax(i) == target[idx]:
                correct += 1
            total += 1

print('Accuracy: %d %%' % (100 * correct / total))

plt.imshow(X[1].view(28,28))
plt.show()

print(torch.argmax(model(X[1].view(-1, 784))[0]))

Each time we run the network, it will take a random image from the test set and analyze the digit depicted on it. After the process is completed, it will display the recognition accuracy in percentage, the image itself, and the digit recognized by the neural network.

This is how it looks:

Python

Conclusion

PyTorch is a powerful open-source machine learning platform that accelerates the transition from research prototypes to production deployments. With it, you can solve various tasks in the fields of artificial intelligence and neural networks.

You don’t need deep knowledge of machine learning to begin working with PyTorch. It is enough to know the basic concepts to repeat and even modify popular procedures like image recognition to suit your needs. A big advantage of PyTorch is the large user community that writes tutorials and shares examples of using the library.

Object recognition in images is one of the simplest and most popular tasks in PyTorch for beginners. However, the capabilities of the library are not limited to this.

Python
01.04.2025
Reading time: 9 min

Similar

Python

How to Delete Characters from a String in Python

When writing Python code, developers often need to modify string data. Common string modifications include: Removing specific characters from a sequence Replacing characters with others Changing letter case Joining substrings into a single sequence In this guide, we will focus on the first transformation—deleting characters from a string in Python. It’s important to note that strings in Python are immutable, meaning that any method or function that modifies a string will return a new string object with the changes applied. Methods for Deleting Characters from a String This section covers the main methods in Python used for deleting characters from a string. We will explore the following methods: replace() translate() re.sub() For each method, we will explain the syntax and provide practical examples. replace() The first Pyhton method we will discuss is replace(). It is used to replace specific characters in a string with others. Since strings are immutable, replace() returns a new string object with the modifications applied. Syntax: original_string.replace(old, new[, count]) Where: original_string – The string where modifications will take place old – The substring to be replaced new – The substring that will replace old count (optional) – The number of occurrences to replace (if omitted, all occurrences will be replaced) First, let’s remove all spaces from the string "H o s t m a n": example_str = "H o s t m a n" result_str = example_str.replace(" ", "") print(result_str) Output: Hostman We can also use the replace() method to remove newline characters (\n). example_str = "\nHostman\nVPS" print(f'Original string: {example_str}') result_str = example_str.replace("\n", " ") print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS String after adjustments: Hostman VPS The replace() method has an optional third argument, which specifies the number of replacements to perform. example_str = "Hostman VPS Hostman VPS Hostman VPS" print(f'Original string: {example_str}') result_str = example_str.replace("Hostman VPS", "", 2) print(f'String after adjustments: {result_str}') Output: Original string: Hostman VPS Hostman VPS Hostman VPS String after adjustments: Hostman VPS Here, only two occurrences of "Hostman VPS" were removed, while the third occurrence remained unchanged. We have now explored the replace() method and demonstrated its usage in different situations. Next, let’s see how we can delete and modify characters in a string using translate(). translate( The Python translate() method functions similarly to replace() but with additional flexibility. Instead of replacing characters one at a time, it allows mapping multiple characters using a dictionary or translation table. The method returns a new string object with the modifications applied. Syntax: original_string.translate(mapping_table) In the first example, let’s remove all occurrences of the $ symbol in a string and replace them with spaces: example_str = "Hostman$Cloud$—$Cloud$Service$Provider." print(f'Original string: {example_str}') result_str = example_str.translate({ord('$'): ' '}) print(f'String after adjustments: {result_str}') Output: Original string: Hostman$Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. To improve code readability, we can define the mapping table before calling translate(). This is useful when dealing with multiple replacements: example_str = "\nHostman%Cloud$—$Cloud$Service$Provider.\n" print(f'Original string: {example_str}') # Define translation table example_table = {ord('\n'): None, ord('$'): ' ', ord('%'): ' '} result_str = example_str.translate(example_table) print(f'String after adjustments: {result_str}') Output: Original string: Hostman%Cloud$—$Cloud$Service$Provider. String after adjustments: Hostman Cloud — Cloud Service Provider. re.sub() In addition to replace() and translate(), we can use regular expressions for more advanced character removal and replacement. Python's built-in re module provides the sub() method, which searches for a pattern in a string and replaces it. Syntax: re.sub(pattern, replacement, original_string [, count=0, flags=0]) pattern – The regular expression pattern to match replacement – The string or character that will replace the matched pattern original_string – The string where modifications will take place count (optional) – Limits the number of replacements (default is 0, meaning replace all occurrences) flags (optional) – Used to modify the behavior of the regex search Let's remove all whitespace characters (\s) using the sub() method from the re module: import re example_str = "H o s t m a n" print(f'Original string: {example_str}') result_str = re.sub('\s', '', example_str) print(f'String after adjustments: {result_str}') Output: Original string: H o s t m a nString after adjustments: Hostman Using Slices to Remove Characters In addition to using various methods to delete characters, Python also allows the use of slices. As we know, slices extract a sequence of characters from a string. To delete characters from a string by index in Python, we can use the following slice: example_str = "\nHostman \nVPS" print(f'Original string: {example_str}') result_str = example_str[1:9] + example_str[10:] print(f'String after adjustments: {result_str}') In this example, we used slices to remove newline characters. The output of the code: Original string:HostmanVPSString after adjustments: Hostman VPS Apart from using two slice parameters, you can also use a third one, which specifies the step size for index increments. For example, if we set the step to 2, it will remove every odd-indexed character in the string. Keep in mind that indexing starts at 0. Example: example_str = "Hostman Cloud" print(f'Original string: {example_str}') result_str = example_str[::2] print(f'String after adjustments: {result_str}') Output: Original string: Hostman CloudString after adjustments: HsmnCod Conclusion In this guide, we learned how to delete characters from a string in Python using different methods, including regular expressions and slices. The choice of method depends on the specific task. For example, the replace() method is suitable for simpler cases, while re.sub() is better for more complex situations.
23 August 2025 · 5 min to read
Python

Command-Line Option and Argument Parsing using argparse in Python

Command-line interfaces (CLIs) are one of the quickest and most effective means of interacting with software. They enable you to provide commands directly which leads to quicker execution and enhanced features. Developers often build CLIs using Python for several applications, utilities, and automation scripts, ensuring they can dynamically process user input. This is where the Python argparse module steps in. The argparse Python module streamlines the process of managing command-line inputs, enabling developers to create interactive and user-friendly utilities. As part of the standard library, it allows programmers to define, process, and validate inputs seamlessly without the need for complex logic. This article will discuss some of the most important concepts, useful examples, and advanced features of the argparse module so that you can start building solid command-line tools right away. How to Use Python argparse for Command-Line Interfaces This is how to use argparse in your Python script: Step 1: Import Module First import the module into your Python parser script: import argparse This inclusion enables parsing .py arg inputs from the command line. Step 2: Create an ArgumentParser Object The ArgumentParser class is the most minimal class of the Python argumentparser module's API. To use it, begin by creating an instance of the class: parser = argparse.ArgumentParser(description="A Hostman tutorial on Python argparse.") Here: description describes what the program does and will be displayed when someone runs --help. Step 3: Add Inputs and Options Define the parameters and features your program accepts via add_argument() function: parser.add_argument('filename', type=str, help="Name of the file to process") parser.add_argument('--verbose', action='store_true', help="Enable verbose mode") Here: filename is a mandatory option. --verbose is optional, to allow you to set the flag to make it verbose. Step 4: Parse User Inputs Process the user-provided inputs by invoking the parse_args() Python method: args = parser.parse_args() This stores the command-line values as attributes of the args object for further use in your Python script.  Step 5: Access Processed Data Access the inputs and options for further use in your program: For example: print(f"File to process: {args.filename}") if args.verbose:     print("Verbose mode enabled") else:     print("Verbose mode disabled") Example CLI Usage Here are some scenarios to run this script: File Processing Without Verbose Mode python3 file.py example.txt File Processing With Verbose Mode python3 file.py example.txt --verbose Display Help If you need to see what arguments the script accepts or their description, use the --help argument: python3 file.py --help Common Examples of argparse Usage Let's explore a few practical examples of the module. Example 1: Adding Default Values Sometimes, optional inputs in command-line interfaces need predefined values for smoother execution. With this module, you can set a default value that applies when someone doesn’t provide input. This script sets a default timeout of 30 seconds if you don’t specify the --timeout parameter. import argparse # Create the argument parser parser = argparse.ArgumentParser(description="Demonstrating default argument values.") # Pass an optional argument with a default value parser.add_argument('--timeout', type=int, default=30, help="Timeout in seconds (default: 30)") # Interpret the arguments args = parser.parse_args() # Retrieve and print the timeout value print(f"Timeout value: {args.timeout} seconds") Explanation Importing Module: Importing the argparse module. Creating the ArgumentParser Instance: An ArgumentParser object is created with a description so that a short description of the program purpose is provided. This description is displayed when the user runs the program via the --help option. Including --timeout: The --timeout option is not obligatory (indicated by the -- prefix). The type=int makes the argument for --timeout an integer. The default=30 is provided so that in case the user does not enter a value, then the timeout would be 30 seconds. The help parameter adds a description to the argument, and it will also appear in the help documentation. Parsing Process: The parse_args() function processes user inputs and makes them accessible as attributes of the args object. In our example, we access args.timeout and print out its value. Case 1: Default Value Used If the --timeout option is not specified, the default value of 30 seconds is used: python file.py Case 2: Custom Value Provided For a custom value for --timeout (e.g., 60 seconds), apply: python file.py --timeout 60 Example 2: Utilizing Choices The argparse choices parameter allows you to restrict an argument to a set of beforehand known valid values. This is useful if your program features some specific modes, options, or settings to check. Here, we will specify a --mode option with two default values: basic and advanced. import argparse # Creating argument parser parser = argparse.ArgumentParser(description="Demonstrating the use of choices in argparse.") # Adding the --mode argument with predefined choices parser.add_argument('--mode', choices=['basic', 'advanced'], help="Choose the mode of operation") # Parse the arguments args = parser.parse_args() # Access and display the selected mode if args.mode: print(f"Mode selected: {args.mode}") else: print("No mode selected. Please choose 'basic' or 'advanced'.") Adding --mode: The choices argument indicates that valid options for the --mode are basic and advanced. The application will fail when the user supplies an input other than in choices. Help Text: The help parameter gives valuable information when the --help command is executed. Case 1: Valid Input To specify a valid value for --mode, utilize: python3 file.py --mode basic Case 2: No Input Provided For running the program without specifying a mode: python3 file.py Case 3: Invalid Input If a value is provided that is not in the predefined choices: python3 file.py --mode intermediate Example 3: Handling Multiple Values The nargs option causes an argument to accept more than one input. This is useful whenever your program requires a list of values for processing, i.e., numbers, filenames, or options. Here we will show how to use nargs='+' to accept a --numbers option that can take multiple integers. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating how to handle multiple values using argparse.") # Add the --numbers argument with nargs='+' parser.add_argument('--numbers', nargs='+', type=int, help="List of numbers to process") # Parse the arguments args = parser.parse_args() # Access and display the numbers if args.numbers: print(f"Numbers provided: {args.numbers}") print(f"Sum of numbers: {sum(args.numbers)}") else: print("No numbers provided. Please use --numbers followed by a list of integers.") Adding the --numbers Option: The user can provide a list of values as arguments for --numbers. type=int interprets the input as an integer. If a non-integer input is provided, the program raises an exception. The help parameter gives the information.  Parsing Phase: After parsing the arguments, the input to --numbers is stored in the form of a list in args.numbers. Utilizing the Input: You just need to iterate over the list, calculate statistics (e.g., sum, mean), or any other calculation on the input. Case 1: Providing Multiple Numbers To specify multiple integers for the --numbers parameter, execute: python3 file.py --numbers 10 20 30 Case 2: Providing a Single Number If just one integer is specified, run: python3 file.py --numbers 5 Case 3: No Input Provided If the script is run without --numbers: python3 file.py Case 4: Invalid Input In case of inputting a non-integer value: python3 file.py --numbers 10 abc 20 Example 4: Required Optional Arguments Optional arguments (those that begin with the --) are not mandatory by default. But there are times when you would like them to be mandatory for your script to work properly. You can achieve this by passing the required=True parameter when defining the argument. In this script, --config specifies a path to a configuration file. By leveraging required=True, the script enforces that a value for --config must be provided. If omitted, the program will throw an error. import argparse # Create an ArgumentParser object parser = argparse.ArgumentParser(description="Demonstrating required optional arguments in argparse.") # Add the --config argument parser.add_argument('--config', required=True, help="Path to the configuration file") # Parse the arguments args = parser.parse_args() # Access and display the provided configuration file path print(f"Configuration file path: {args.config}") Adding the --config Option: --config is considered optional since it starts with --. However, thanks to the required=True parameter, users must include it when they run the script. The help parameter clarifies what this parameter does, and you'll see this information in the help message when you use --help. Parsing: The parse_args() method takes care of processing the arguments. If someone forgets to include --config, the program will stop and show a clear error message. Accessing the Input: The value you provide for --config gets stored in args.config. You can then use this in your script to work with the configuration file. Case 1: Valid Input For providing a valid path to the configuration file, use: python3 file.py --config settings.json Case 2: Missing the Required Argument For running the script without specifying --config, apply: python3 file.py Advanced Features  While argparse excels at handling basic command-line arguments, it also provides advanced features that enhance the functionality and usability of your CLIs. These features ensure your scripts are scalable, readable, and easy to maintain. Below are some advanced capabilities you can leverage. Handling Boolean Flags Boolean flags allow toggling features (on/off) without requiring user input. Use the action='store_true' or action='store_false' parameters to implement these flags. parser.add_argument('--debug', action='store_true', help="Enable debugging mode") Including --debug enables debugging mode, useful for many Python argparse examples. Grouping Related Arguments Use add_argument_group() to organize related arguments, improving readability in complex CLIs. group = parser.add_argument_group('File Operations') group.add_argument('--input', type=str, help="Input file") group.add_argument('--output', type=str, help="Output file") Grouped arguments appear under their own section in the --help documentation. Mutually Exclusive Arguments To ensure users select only one of several conflicting options, use the add_mutually_exclusive_group() method. group = parser.add_mutually_exclusive_group() group.add_argument('--json', action='store_true', help="Output in JSON format") group.add_argument('--xml', action='store_true', help="Output in XML format") This ensures one can choose either JSON or XML, but not both. Conclusion The argparse Python module simplifies creating reliable CLIs for handling Python program command line arguments. From the most basic option of just providing an input to more complex ones like setting choices and nargs, developers can build user-friendly and robust CLIs. Following the best practices of giving proper names to arguments and writing good docstrings would help you in making your scripts user-friendly and easier to maintain.
21 July 2025 · 10 min to read
Python

How to Get the Length of a List in Python

Lists in Python are used almost everywhere. In this tutorial we will look at four ways to find the length of a Python list: by using built‑in functions, recursion, and a loop. Knowing the length of a list is most often required to iterate through it and perform various operations on it. len() function len() is a built‑in Python function for finding the length of a list. It takes one argument—the list itself—and returns an integer equal to the list’s length. The same function also works with other iterable objects, such as strings. Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany"] count = len(Country_list) print("There are", count, "countries") Output: There are 4 countries Finding the Length of a List with a Loop You can determine a list’s length in Python with a for loop. The idea is to traverse the entire list while incrementing a counter by  1 on each iteration. Let’s wrap this in a separate function: def list_length(list): counter = 0 for i in list: counter = counter + 1 return counter Country_list = ["The United States of America", "Cyprus", "Netherlands", "Germany", "Japan"] count = list_length(Country_list) print("There are", count, "countries") Output: There are 5 countries Finding the Length of a List with Recursion The same task can be solved with recursion: def list_length_recursive(list): if not list: return 0 return 1 + list_length_recursive(list[1:]) Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland"] count = list_length_recursive(Country_list) print("There are", count, "countries") Output: There are 6 countries How it works. The function list_length_recursive() receives a list as input. If the list is empty, it returns 0—the length of an empty list. Otherwise it calls itself recursively with the argument list[1:], a slice of the original list starting from index 1 (i.e., the list without the element at index 0). The result of that call is added to 1. With each recursive step the returned value grows by one while the list shrinks by one element. length_hint() function The length_hint() function lives in the operator module. That module contains functions analogous to Python’s internal operators: addition, subtraction, comparison, and so on. length_hint() returns the length of iterable objects such as strings, tuples, dictionaries, and lists. It works similarly to len(): from operator import length_hint Country_list = ["The United States of America", "Cyprus", "Netherlands","Germany", "Japan", "Poland", "Sweden"] count = length_hint(Country_list) print("There are", count, "countries") Output: There are 7 countries Note that length_hint() must be imported before use. Conclusion In this guide we covered four ways to determine the length of a list in Python. Under equal conditions the most efficient method is len(). The other approaches are justified mainly when you are implementing custom classes similar to list.
17 July 2025 · 3 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support