How to Install and Configure SSH on an Ubuntu Server

How to Install and Configure SSH on an Ubuntu Server
Hostman Team
Technical writer
Ubuntu
24.11.2023
Reading time: 10 min

Secure Shell (SSH) is a network protocol for secure client-server communication. Each interaction is encrypted. It allows you to securely manage the server, transfer files, and perform other tasks. 

For example, you have ordered a cloud server on Hostman and want to manage it from your laptop. To do this, you only need to set up SSH access. Through a secure connection, you will be able to perform all necessary administration actions.

For successful configuration, you need to: 

  1. Install the SSH server components on your server. The openssh-server package will cover that.

  2. Have the SSH client on your local machine from which you will connect to the remote host. 

    For this purpose, the openssh-client package is usually used. It's pre-installed in most Linux and BSD distributions and also in the latest Windows versions. On older versions of Windows, you'll need to install additional utilities. One of the most popular solutions is PuTTY.

Enabling SSH

By default, remote access via a secure network protocol is forbidden. However, installing SSH in Ubuntu is very easy.

Start the console of the server where you need to configure SSH. 

Update the package manager:

sudo apt update

Install the software:

sudo apt install openssh-server

Both operations require superuser rights, which you get with sudo.

On Ubuntu, the OpenSSH starts automatically after installation but you can check its status using the command:

sudo systemctl status ssh

The output should indicate that the service is running and allowed to start on system boot: 

ssh.service - OpenBSD Secure Shell server
   Loaded: loaded (/lib/systemd/system/ssh.service; enabled; vendor preset: enabled)
   Active: active (running) since Mon 2022-03-21 12:34:00 CEST; 1m ago

This means that the installation was successful. To return to the command prompt, press the q key.

If the service is not active, start it manually with the command:

sudo systemctl enable --now ssh

Ubuntu comes with a firewall configuration tool called UFW. If you have a firewall enabled on your system, be sure to open the SSH port:

sudo ufw allow ssh

Now you can connect to your Ubuntu system via SSH from any remote computer.

-

Creating an SSH key pair

To make the connection even more secure and authentication more convenient, use an SSH key pair: a public and a private SSH keys. The public key is stored on the host, and the private key is stored on the user's computer.

Let's see how to create keys in different operating systems. Let's start with Ubuntu.

To generate a new 2048-bit RSA key pair, open a terminal and run the command below:

ssh-keygen -t rsa

A prompt will appear asking you where to save the keys. If you press Enter, the system will save the key pair in the default .ssh subdirectory of the home folder. You can also specify an alternate path where you want to save the key pair. However, it is recommended to use the default directory. It makes further management much easier.

If you have already created a key pair on the client computer, the system will prompt you to overwrite it. The choice is entirely up to you, but be careful. If you choose to overwrite it, you will not be able to use the previous key pair to log in to the server. It will be deleted. Fixing the conflict is easy; just specify a unique name for each new pair. The storage folder can remain the same.

You will also be prompted to enter a passphrase to add an extra layer of security that prevents unauthorized users from accessing the host. Press Enter if you do not want to use it.

To verify that the keys have been created, run the command:

ls -l ~/.ssh/id_*.pub. 

The terminal will display a list of keys.

Similarly, you can generate a pair on macOS or newer Windows versions.

If you're using an older Windows OS, you'll need to download the PuTTY utility suite. It contains the PuTTYgen application. To create an SSH key pair, all you need to do is run the PuTTYgen and swipe with your mouse. You can also select a folder to store the keys and add a passphrase for maximum protection.

Adding the SSH key to the server

The private key is stored on the computer. You should never transfer it to anyone. But you need to transmit the public part to the server.

If you have password access to the host, you can transfer the public key using ssh-copy-id. Example command:

ssh-copy-id [email protected] 

Instead of hostman enter your username, instead of 123.456.78.99 enter the server IP address. Enter the password when prompted, and after which the public key will be transferred to the host.

To connect to the server using the SSH keys, run the command:

ssh [email protected]

Instead of hostman enter your username, instead of 123.456.78.99 enter the server IP address. If you have not set a passphrase, you will log in without further authentication. The security system will check the public and private parts of the key and establish a connection if they match. 

Configuring SSH

You can configure your Ubuntu Server through the /etc/ssh/sshd_config file. Before making changes to it, make a backup copy. It will keep you from wasting time on reinstallation if you suddenly make a mistake.

To make a copy, run the command:

sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.factory-defaults

The /etc/ssh/sshd_config.factory-defaults will store the default settings. You will be editing the /etc/ssh/sshd_config file.

Disabling password authentication

SSH password authentication on the Ubuntu Server isn't bad. But if you create long, complex passwords, you can be tempted to store them insecurely. Using encryption keys to authenticate the connection is a more secure alternative. In this case, the password may be unnecessary and you can disable it.

Before proceeding, keep the following in mind:

Disabling password authentication increases the likelihood of being locked out of your server. You can be locked out if you lose your private key or break the ~/.authorized_keys file .

If you are locked out, you can no longer access any application files.

You should only disable password authentication if you are very familiar with the key authentication mechanism and understand the potential consequences of losing access to your server.

To disable password authentication, connect to the server as root and edit the sshd_config file. Change the PasswordAuthentication parameter value to No instead of Yes

Then restart the SSH service by running the following command:

sudo systemctl restart sshd

After that, you will no longer be able to use passwords for authentication. You will only be able to connect using Linux SSH keys.

Disabling root access

To improve security on your remote Ubuntu system, consider disabling root user login via SSH.

To do this, edit the configuration file:

sudo vi /etc/ssh/sshd_config

Change the PermitRootLogin value to No.

Another option is allowing the root user to log in using any authentication mechanism other than a password. To do this, set the PermitRootLogin parameter to prohibit-password.

This configuration lets you log in as the root user with a private key. The main thing is to ensure that you have copied the public key to the system before restarting the SSH service.

To apply the updated configuration, restart the service:

sudo systemctl restart sshd

Changing the default port

By default, the SSH server uses port 22. To increase security, you can set it to any other value. We recommend using ports from the upper range, from 50000 to 65000. It is also preferable to pick numbers in which all digits are different, for example, 56713.

Open the configuration file:

sudo vi /etc/ssh/sshd_config

Uncomment the line Port 22. Instead of 22, specify another number, for example, Port 56713. Save the changes and close the file.

To apply the configuration, restart the service:

sudo systemctl restart sshd

After a successful restart, verify that the connection is now on a different port:

ssh -p 56713 user@server_ip

Remember to restart the service after each change. Otherwise, SSH connections will follow the old rules.

Safe and scalable Virtual Servers and VPC

Configuring tunneling

Tunneling is a method of transmitting unencrypted traffic or data over an encrypted channel. In addition to file transfers, tunneling can also be used to access internal network services through firewalls and to create a VPN.

There are three types of tunneling (forwarding):

  • Local,

  • remote,

  • dynamic.

To configure some of them, you will need to edit the SSH configuration file.

Local forwarding

It is a port forwarding from a client computer to a remote computer. The connection is then redirected to another port on the target computer.

The SSH client checks for a connection on the given port. When it receives a connection request, it tunnels it with the specified port on the remote host. The host then connects to another target computer through the configured port.

Mostly, local forwarding is used to connect externally to a service from an internal network. For example, this is how you can configure access to a database. It is also used for remote file sharing.

The -L argument is used for local forwarding. For example:

ssh [email protected] -L 8080:server1.example:3000 

Now open a browser on the local computer. You can use localhost:8080 to access the remote application instead of accessing it using the address server.example:3000.

Remote redirection

Remote redirection allows you to connect to a local computer from a remote computer. SSH does not support remote port forwarding by default. Therefore, you need to enable it in the SSH configuration file. It will require some additional configuration of the Ubuntu server. 

Open the configuration file:

sudo vi /etc/ssh/sshd_config 

Set the GatewayPorts parameter to Yes.

Save the changes and restart the service:

sudo systemctl restart sshd

Use the -R argument to configure forwarding. Example command:

ssh -R 8080:127.0.0.0.1:3000 -N -f [email protected] 

After running this command, the host will listen on port 8080 and redirect all traffic to port 3000, which is open on the local computer.

Remote redirection is mainly used to give someone from outside access to an internal service.

Dynamic forwarding

Local and remote forwarding methods allow you to tunnel and communicate with a single port. With dynamic forwarding, you can tunnel and communicate with multiple ports.

Dynamic tunneling creates a socket on the local computer. It works like a SOCKS proxy server. Basically, your local computer is used as a SOCKS proxy server and listens on port 1080 by default. When the host connects to this port, it is redirected to the remote machine and then to the dynamic machine through the dynamic port.

The -D argument is used to configure dynamic tunneling. Example command:

ssh -D 9090 -N -f [email protected]

Once you have set up tunneling, you can configure your application to use it. For example, to add a proxy to the browser. You'll need to configure redirection separately for each application you want to tunnel traffic for.

Disabling SSH

To disable the Open SSH server, stop the SSH service by running the command:

sudo systemctl disable --now ssh

To start the service back up, run the command:

sudo systemctl enable --now ssh

The enable command in Ubuntu does not reinstall the software, so you don't have to reconfigure anything. It simply starts up the previously installed and configured service.

Set up a managed cloud database in minutes

Conclusion

In this article, we have covered the basics of using SSH on an Ubuntu machine. Now you know how to install the necessary software to set up a secure connection, configure it, route the tunnel, and even disable the service when it is not in use.

Connecting via SSH in Ubuntu is a common task, so you'll definitely need this knowledge. If not in development and administration, then for personal purposes, such as establishing a secure connection between devices in a local network.

Ubuntu
24.11.2023
Reading time: 10 min

Similar

Ubuntu

How To Add Swap Space on Ubuntu 22.04

Managing resources efficiently is vital for maintaining the performance and stability of the OS. In this article, the methods of adding swap space to Ubuntu 22.04 is outlined to help users boost their platform's capacity to carry on memory-intensive activities. Swap space acts as a virtual extension of physical memory (RAM), allowing the system to offload inactive processes when it is fully utilised. While Ubuntu 22.04 is highly efficient in memory management, adding or increasing paging area can be a practical solution for environments with small data storage unit or when running resource-heavy applications. This article provides a step-by step approach in creation, configuration, and optimisation of swap space, ensuring a smooth and efficient setup tailored to everyone's needs. Prerequisites Before adding swap space on Ubuntu 22.04, make sure the following prerequisites are satisfied to avoid potential issues: Administrative Privileges: User must have root or sudo access to the platform to execute commands for creating and configuring swap space. Existing Disk Volume: Confirm that the instance has sufficient free disk storage to allocate for the desired swap size. Deploy the following instruction to check disk space: df -h Current Status: Determine whether a swap space already exists and come up with the decision to expand it. Utilise the instruction below to verify: sudo swapon --show Suitable Performance Needs Assessment: Determine the required capacity of the swap space according to the current storage resource and workload. A common rule is to have at least same amount as the RAM size, but this may vary depending on your use case. What is Swap A crucial part of Linux memory management, swap space is intended to improve system performance and stability by increasing the system's accessible capacity beyond the physical random-access memory (RAM). The OS frees up memory for running processes by offloading idle or seldom used data to the paging space area when the RAM is completely utilised. This procedure enables the system to manage resource-intensive tasks more effectively and keeps apps from crashing because of memory shortages. Depending on the demands of the user, swap can be implemented in Ubuntu as a file or as a separate disc. This can be useful, but it cannot take the place of enough RAM. Because disc storage has slower read and write rates than physical memory, an over-reliance on this might result in performance loss. Optimising system performance requires an understanding of swap's operation and proper configuration, especially for tasks like managing apps on platforms with limited RAM, operating virtual machines, or compiling huge codebases. Swap Advantages Swap space is an important part of Linux environment memory management because it provides a number of benefits. The following advantages are offered by swap: Prevents System Crashes Supports Memory-Intensive Applications Enhances Multitasking Smoother multitasking without sacrificing speed for platforms managing numerous processes at once by balancing memory use by offloading less important operations. Provides Flexibility Swap space allows for the dynamic addition or resizing of paging space, which facilitates system requirements adaptation without requiring disc repartitioning. Extends Uptime Period It is a short-term fix to increase stability and prolong its uptime under high loads in situations where replacing physical memory is not immediately practical. Facilitates Hibernation Swap is crucial for systems set up to utilise the hibernate feature since it keeps the contents of the RAM in place when the system is turned off, enabling a smooth restart. Supports Low-Memory Systems For lightweight systems, this is beneficial because it guarantees that critical operations continue to run even when memory is limited on devices with little physical memory. Swap is essential for increasing overall system resilience and flexibility, especially in resource-constrained contexts, even while it cannot replace physical RAM and shouldn't be over-relied upon. Swap Disadvantages Although swap space has several benefits for memory management, there are a few significant drawbacks that should be taken into account when setting it up. Slower Performance Compared to RAM Increased Disk Wear Latency in Resource-Intensive Tasks When the system relies heavily on swap, tasks that require high memory bandwidth, such as video editing or large-scale data analysis, may experience significant delays due to slower data transfer rates. Limited Effectiveness in Low-RAM Scenarios While swap can extend memory, it is not a substitute for adequate RAM. On systems with extremely low physical memory, relying on swap may not be enough to handle modern applications efficiently. Hibernation Dependency If the swap space is insufficient, hibernation may fail as it requires swap to store the contents of the RAM. Misconfigured swap sizes can lead to system errors during hibernation attempts. Additional Storage Allocation Allocating swap space reduces the available storage for other purposes. For systems with limited disk capacity, dedicating a portion to swap may not be feasible. Complexity in Configuration Optimising swappiness and settings require careful planning and monitoring. Poor configuration may lead to either underutilisation or excessive reliance, both of which impact system performance. How to Add Swap Space by Creating a Swap File Making a swap file in Ubuntu 22.04 to increase swap space is a simple procedure that can assist boost system performance, particularly on systems with low RAM. Here is a thorough, step-by-step guide to assist you with the process: Make sure swap space is enabled before making a new file. Run the instruction below. sudo swapon --show Based on the RAM capacity and usage needs, choose the swap file's size. A typical rule of thumb is: For systems with less than 2 GB of RAM, swap size is equal to RAM size × 2. For systems with more than 2 GB of RAM, swap size equals RAM size. Choose the location of the file, which is often the root directory. Adjust to the user's preferred swap size. To do it, use the fallocate command. sudo fallocate -l 4G /swapfile If fallocate is unavailable or gives an error, employ the dd command. sudo dd if=/dev/zero of=/swapfile bs=1M count=4096 bs=1M: Sets the block size to 1 Megabyte. count=4096: Creates a 4GB file (4096 × 1MB). Verify that the permissions are configured appropriately to prevent unauthorised access. Execute the following command. sudo chmod 600 /swapfile It is necessary to format the file as swap space. After that, swap can be activated. Execute the command listed below.       sudo mkswap /swapfile sudo swapon /swapfile To verify if it has been added, use the instructions listed below, appropriately. sudo swapon --show free -h Add the swap file to the /etc/fstab file to guarantee it stays active following a reboot. Perform the following steps. Backup the fstab file before editing. sudo cp /etc/fstab /etc/fstab.bak Add the swap record in fstab. echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab Validate using command below. cat /etc/fstab Configuring Swappiness (Optional) Swappiness controls the kernel's use of swap space. 60 is the default value. Usage rises with higher values and falls with lower values. Verify current swappiness value by running command below. cat /proc/sys/vm/swappiness Use the sysctl utility to temporarily modify the swappiness. The value is lowered to 40 from 60 by the subsequent command. sudo sysctl vm.swappiness=40 To make the changes permanent, run these commands respectively. echo 'vm.swappiness=40' | sudo tee -a /etc/sysctl.conf sudo sysctl -p Modify Cache Pressure (Optional) Cache pressure regulates the kernel's propensity to recover caching memory, which can be lessened with lower values. If for example, a user wants to set VFS Cache Pressure to 40, this can be set using the commands below respectively. echo 'vm.vfs_cache_pressure=40' | sudo tee -a /etc/sysctl.conf sudo sysctl -p Verify that the swap file is operational and set up properly. Use the commands below to check it. sudo swapon --show free -h Increasing Swap Space with Swap File To resize the system's swap file, use the following actions. Temporarily disable the swap file. sudo swapoff /swapfile Change the size of the swap file to the preferred size. Replace 8G with your desired new size. Using the fallocate command sudo fallocate -l 8G /swapfile Using the dd command sudo dd if=/dev/zero of=/swapfile bs=1M count=8192 To adjust for the new size, reinitialise the swap file. sudo mkswap /swapfile Activate the swap file that has been resized. sudo swapon /swapfile Validate that the swap space has been updated from 4GB to 8GB. sudo swapon --show free -h Conclusion To sum up, creating a swap file in Ubuntu is a simple procedure that can greatly improve system speed, especially when working with memory-demanding apps or when physical RAM is at limited availability. Without the need for intricate partitioning, users can rapidly increase the virtual memory of their system by following the instructions to create, format, and activate a swap file. The swap space will also be active across reboots if the swap file is made permanent via the /etc/fstab file. The memory management can be further optimised by modifying variables like swappiness. All things considered, making a swap file is a practical and adaptable way to enhance Ubuntu system efficiency and stability. You can install Ubuntu on a VPS on Hostman.
23 December 2024 · 8 min to read
PHP

How to Install PHP and PHP-FPM on Ubuntu 24.04

In this guide, we will describe installing PHP and PHP-FPM on Ubuntu 24.04. PHP, which stands for Hypertext Preprocessor, is a language that is widely used and open-sourced, mainly for web development. PHP is the only PHP FastCGI implementation, that is extremely useful for high-traffic websites. At the end of this guide, you should be ready to go with PHP running on your server. Prerequisites Before we start, please confirm you have the following: Ubuntu 24.04 LTS installed on the server A user account with the sudo access An essential command-line operation understanding A reliable internet connection for downloading software packages To ensure that your system is up to date, run the following commands: sudo apt updatesudo apt upgrade Install Apache Launch the Apache web server using the following command: sudo apt install apache2 Install PHP Let's begin with installing the PHP package in Ubuntu 24.04 server. First, open a terminal on your Ubuntu system. PHP and common modules are included in the installation action: sudo apt install php That command installs the core PHP package, the command-line interface, and common libraries. Make sure the installation works: php -v Install PHP Extensions PHP extensions are the way to go to extending PHP installation with certain functions. Start by installing extensions: sudo apt install php-curl php-mbstring php-xml Short description: php-mysql: Allows MySQL database connection php-gd: Adds ability to manipulate images php-curl: Makes possible to communicate with servers php-mbstring: Provides multibyte string support php-xml: Enables XML support php-zip: Enables ZIP support Additional extensions can be installed as you see fit for your projects. You can search them using: apt-cache search php- Install and Configure PHP-FPM PHP-FPM is essential when dealing with high-traffic websites. To install and configure it: Install the package: sudo apt install php-fpm Launch PHP-FPM service. Depending on the installation, version number may differ. sudo systemctl start php8.3-fpm Tell PHP-FPM to go on boot: sudo systemctl enable php8.3-fpm Verfy PHP-FPM is working: systemctl status php8.3-fpm This will output a response that says "Active (Running)" if everything is working as expected. Test PHP and PHP-FPM To ensure that PHP and PHP-FPM are both running with no problems, create a test file then serve it via the website's server. Let's say it uses Apache in this example: Generate PHP Info File. To show PHP settings using the phpinfo() function, do the following: mkdir -p /var/www/htmlecho "<?php phpinfo(); ?>" | sudo tee /var/www/html/info.php Set Up Apache for PHP-FPM. Ensure Apache is made compatible for PHP-FPM, by first finding Apache configuration file (usually /etc/apache2/sites-available/000-default.conf) then inserting: <FilesMatch \.php$>   SetHandler "proxy:unix:/var/run/php/php8.3-fpm.sock|fcgi://localhost/"</FilesMatch> Remember we must alter specific PHP version and socket path to suit individual settings of the server. Activate PHP and PHP-FPM. Enable PHP and PHP-FPM following these instructions: sudo apt install libapache2-mod-phpsudo a2enmod proxy_fcgi setenvif Reboot Apache. Apply changes by restarting Apache server: sudo systemctl restart apache2 Access PHP Info Page. First open your web browser and go to: http://your_server_ip/info.php Replace [server_ip] with the server IP address or domain. You can see details of your PHP installation. Install Multiple PHP Versions For particular projects you might need to run different applications, each one may require different functionalities. This is the way to manage and manipulate multiple PHP versions on Ubuntu 24.04. First, add PHP repository: sudo apt install software-properties-commonsudo add-apt-repository ppa:ondrej/php && sudo apt update Install PHP versions you need: sudo apt install php8.1 php8.1-fpm Deselect one PHP version and elect the other: sudo update-alternatives --set php /usr/bin/php8.1 If you are using multiple PHP versions, ensure that your web server is pointing to the appropriate PHP-FPM socket. Securing PHP and PHP-FPM: Best Practices As a web developer, you know the importance of incorporating both PHP and PHP-FPM into web applications that are safe and robust. In this section, we will introduce a number of security steps that you should adapt using PHP and PHP-FPM. 1. Keep PHP and PHP-FPM Updated PHP and PHP-FPM should be up to date. Doing regular updates will eliminate known security breaches and provide overall security improvements. You need to check for updates as often as possible then update the system as soon as the updates are available. 2. Configure PHP Securely To configure PHP securely, start by disabling unnecessary and potentially dangerous functions, such as exec, shell_exec, and eval, in the PHP configuration file (php.ini). Use open_basedir directive to restrict PHP’s access to specific directories, preventing unauthorized access to sensitive files. Set display_errors to Off in production to avoid exposing error messages that could provide insights to attackers. Limit file upload sizes and execution times to reduce the risk of resource exhaustion attacks. Besides, ensure that PHP runs under a dedicated, restricted user account with minimal permissions to prevent privilege escalation. Regularly update PHP to the latest stable version to patch vulnerabilities and improve security. 3. Use Safe Error Reporting To ensure an error-free application, it is quite handy locating and correcting code bugs in a development environment. In production environment, you have the possibility to hide the PHP errors by setting the display_error directive to be off, and you should also set the log_errors directive to be On, thus this will help you prevent PHP from showing errors to the users whereas your server will log it in a safe location without problems to users. 4. Implement Input Validation Being aware of the input validations is quite crucial during the programming of your software. Make sure that all deficiencies are tested and only SQL statements containing their SQL equivalent that can produce outwardly neutral queries via prepared statements is considered safe. 5. Secure PHP-FPM Configuration PHP-FPM is required to run using a non-usual user account with minium rights. Furthermore, access to the PHP-FPM socket or port should be very limited to the web application. 6. Enable Open_basedir You need to bind open_basedir directive in order to restrict access files within the given directory. In this case, if you attempt to visit a forbidden directory and the request is accidentally transmitted to the server, PHP will prevent you from doing so. 7. Use HTTPS We need to secure web calls by making apps HTTPS-only, which is the only prominent way to block all the known hacking tricks. Conclusion With this guide, you've successfully set up PHP and PHP-FPM on Ubuntu 24.04. Your server is now configured for dynamic web applications. To maintain security and performance, remember to keep the system and packages regularly updated.
09 December 2024 · 6 min to read
Ubuntu

How to Configure an Additional IP as an Alias in Ubuntu

In the network administration world, the task of setting up additional IP addresses on a single network interface is commonly performed. The technique of IP aliasing, which is a system for a device to reply to several IP addresses on one network interface, penetrates this model. All Ubuntu users should be familiar with modifying and applying these settings to ensure robust networking administration. This guide will detail the methods of creating an extra IP address in Ubuntu as an alias for both the versions of Ubuntu 24.04 and 22.04. Prerequisites Obviously, one first needs to set up the system in a way that would allow for the manipulation of all IP addresses over the same network, using Ubuntu. Here is the list: A system running either Ubuntu 24.04 or Ubuntu 22.04 Admin access to the system (sudo privileges) Basic knowledge of command-line interface operations An additional IP address assigned by a network administrator or ISP Network interface name information (e.g., eth0, ens3) When troubleshooting problems, we are in danger of causing even more difficulty, as network interfaces provided by networks are not reliable. With this in mind, it would be wise to keep a backup of the configuration files before proceeding with the changes. Configuring an Additional IP Address within Ubuntu 24.04 Ubuntu 24.04, the latest long-term support release, uses Netplan for network configuration. This configuration is also applicable for Ubuntu 22.04 and beyond. Netplan is a utility for configuring networking on Linux systems. Here's how to create an additional IP address: Check the Network Interface Primarily, it is necessary to define the network interface that will carry the new address. You can achieve this by running the following command: ip addr show The output of this command will display all the interfaces. Find the name of the interface (e.g. ens3, eth0) currently in use. Edit the Netplan Configuration File Normally Netplan configuration files are found in the /etc/netplan/ directory. The file name may be different but most of them end with a .yaml extension. To change the file, use a text editor with root privileges: sudo nano /etc/netplan/50-cloud-init.yaml Insert the New IP Address In the YAML file, add the new IP address under the addresses section of the appropriate network interface. The configuration may appear like this: network: version: 2 renderer: networkd ethernets: eth0: addresses: - "195.133.93.70/24" - "166.1.227.189/24" #New IP address - "192.168.1.2/24" #Private IP address nameservers: addresses: - "1.1.1.1" - "1.0.0.1" dhcp4: false dhcp6: false routes: - to: "0.0.0.0/0" via: "195.133.93.1" Apply the Changes Upon saving your edits, you need to apply the new version of the configuration by running this command: sudo netplan apply Validate the Configuration After completing the steps above, you will need to repeat the ip addr show command to confirm that the new IP address is in place. Now the output of this command should also include the new IP address. Additional Considerations Persistent Configuration The choices made by Netplan are stable and will last through the restart of the device. But, it's a good idea to verify the configuration with a system reboot to make sure everything goes well after the restart. Firewall Configuration When adding a new IP address, you may need to update the firewall rules. Ubuntu traditionally uses UFW (Uncomplicated Firewall). To avoid blocking the new IP, you will have to create new rules to UFW. Network Services If the system has some services running which are linked to specific IP addresses, then you must update their configurations to recognize and utilize the new IP address as well. IPv6 Considerations The above examples talk about IPv4. If you have to use IPv6 addresses, then the procedure is relatively the same; you will have to use a different style of address though. Netplan supports both IPv4 and IPv6 configurations. Troubleshooting In case of issues emerging during the configuration stage, try: Check for syntax errors in the YAML file with the command: sudo netplan --debug generate. Ensure that there are no conflicts with other devices using the same IP address on the network. Verify correct setting of the subnet mask and the gateway. Check the system logfile for error messages: journalctl -xe. Advanced IP Aliasing Techniques Network administrators can see how advanced IP aliasing plays a key role in improving network management: virtual interfaces make it possible to have several logical interfaces on a physical network interface, wherein all have their IP and network settings. Dynamic IP Aliasing There are cases where network administrators would have to implement dynamic IP aliasing. With the help of scripts, it is possible to add or remove IP aliases according to certain conditions or occurrences. For example, a script can be made to insert an IP alias whenever a particular service starts and remove it every time the service stops. IP Aliasing in Containerized Environments The popularity of containerization in the present age necessitates having IP aliasing in order to control network configuration of Docker containers and any other containerized applications. In such cases, IP aliases are quite often employed to expose multiple services on a container at different IP addresses or assist containers to communicate with one another. Docker Network Aliases In Docker, network aliases can be used to allow multiple containers to respond to the same DNS name on a custom network. Among other things, this is indispensable in microservices architectures where service discovery is a very important issue. Security Implications of IP Aliasing Though IP aliasing has a multitude of advantages, the issue of security deserves also to be looked into. Among other things, the more IP addresses you put, the larger the possible security breach of a system. The network administrators must guarantee the applications are protected with: Configurations of a firewall that will secure all the IP aliases Intrusion Detection Systems (IDS) to record the traffic of all IP addresses Periodically checking the use and need of each IP alias Enabling of appropriate security tools for those services bound to specific IP aliases Conclusion Putting a new IP address as an alias into Ubuntu is a highly efficient process as their utility of Netplan helps greatly. Whether you are using Ubuntu 24.04 or 22.04, the steps remain the same including editing the Netplan configuration file, adding the new IP address, and applying the changes. A system with multiple IP addresses on a single network interface of a single computer can be used to do different tasks on such a network. The ability to respond to several IP addresses on one network interface becomes very useful in several networking situations. Through these steps, you can increase the Ubuntu computer networking capabilities quickly and effectively. The sequence is always to first back up existing configurations then to make changes followed by in-depth test post-installation. With these skills, a network infrastructure manager or an IT technician can effectively manage and optimize his Ubuntu-powered network infrastructure to cater to diverse networking requirements.
29 November 2024 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support