Sign In
Sign In

How to Configure an Additional IP as an Alias in Ubuntu

How to Configure an Additional IP as an Alias in Ubuntu
Adnene Mabrouk
Technical writer
Ubuntu
29.11.2024
Reading time: 6 min

In the network administration world, the task of setting up additional IP addresses on a single network interface is commonly performed. The technique of IP aliasing, which is a system for a device to reply to several IP addresses on one network interface, penetrates this model. All Ubuntu users should be familiar with modifying and applying these settings to ensure robust networking administration.

This guide will detail the methods of creating an extra IP address in Ubuntu as an alias for both the versions of Ubuntu 24.04 and 22.04.

Prerequisites

Obviously, one first needs to set up the system in a way that would allow for the manipulation of all IP addresses over the same network, using Ubuntu. Here is the list:

  • A system running either Ubuntu 24.04 or Ubuntu 22.04
  • Admin access to the system (sudo privileges)
  • Basic knowledge of command-line interface operations
  • An additional IP address assigned by a network administrator or ISP
  • Network interface name information (e.g., eth0, ens3)

When troubleshooting problems, we are in danger of causing even more difficulty, as network interfaces provided by networks are not reliable. With this in mind, it would be wise to keep a backup of the configuration files before proceeding with the changes.

Configuring an Additional IP Address within Ubuntu 24.04

Ubuntu 24.04, the latest long-term support release, uses Netplan for network configuration. This configuration is also applicable for Ubuntu 22.04 and beyond.

Netplan is a utility for configuring networking on Linux systems. Here's how to create an additional IP address:

  1. Check the Network Interface

Primarily, it is necessary to define the network interface that will carry the new address. You can achieve this by running the following command:

ip addr show

The output of this command will display all the interfaces. Find the name of the interface (e.g. ens3, eth0) currently in use.

  1. Edit the Netplan Configuration File

Normally Netplan configuration files are found in the /etc/netplan/ directory. The file name may be different but most of them end with a .yaml extension. To change the file, use a text editor with root privileges:

sudo nano /etc/netplan/50-cloud-init.yaml
  1. Insert the New IP Address

In the YAML file, add the new IP address under the addresses section of the appropriate network interface. The configuration may appear like this:

network:
  version: 2
  renderer: networkd
  ethernets:
	eth0:
  	  addresses:
  	  - "195.133.93.70/24"
  	  - "166.1.227.189/24" #New IP address
  	  - "192.168.1.2/24" #Private IP address
  	nameservers:
    	  addresses:
    	  - "1.1.1.1"
    	  - "1.0.0.1"
  	dhcp4: false
  	dhcp6: false
  	routes:
  	- to: "0.0.0.0/0"
        via: "195.133.93.1"
  1. Apply the Changes

Upon saving your edits, you need to apply the new version of the configuration by running this command:

sudo netplan apply
  1. Validate the Configuration

After completing the steps above, you will need to repeat the ip addr show command to confirm that the new IP address is in place. Now the output of this command should also include the new IP address.

Additional Considerations

  • Persistent Configuration

The choices made by Netplan are stable and will last through the restart of the device. But, it's a good idea to verify the configuration with a system reboot to make sure everything goes well after the restart.

  • Firewall Configuration

When adding a new IP address, you may need to update the firewall rules. Ubuntu traditionally uses UFW (Uncomplicated Firewall). To avoid blocking the new IP, you will have to create new rules to UFW.

  • Network Services

If the system has some services running which are linked to specific IP addresses, then you must update their configurations to recognize and utilize the new IP address as well.

  • IPv6 Considerations

The above examples talk about IPv4. If you have to use IPv6 addresses, then the procedure is relatively the same; you will have to use a different style of address though. Netplan supports both IPv4 and IPv6 configurations.

Troubleshooting

In case of issues emerging during the configuration stage, try:

  • Check for syntax errors in the YAML file with the command: sudo netplan --debug generate.
  • Ensure that there are no conflicts with other devices using the same IP address on the network.
  • Verify correct setting of the subnet mask and the gateway.
  • Check the system logfile for error messages: journalctl -xe.

Advanced IP Aliasing Techniques

Network administrators can see how advanced IP aliasing plays a key role in improving network management: virtual interfaces make it possible to have several logical interfaces on a physical network interface, wherein all have their IP and network settings.

  • Dynamic IP Aliasing

There are cases where network administrators would have to implement dynamic IP aliasing. With the help of scripts, it is possible to add or remove IP aliases according to certain conditions or occurrences. For example, a script can be made to insert an IP alias whenever a particular service starts and remove it every time the service stops.

  • IP Aliasing in Containerized Environments

The popularity of containerization in the present age necessitates having IP aliasing in order to control network configuration of Docker containers and any other containerized applications. In such cases, IP aliases are quite often employed to expose multiple services on a container at different IP addresses or assist containers to communicate with one another.

  • Docker Network Aliases

In Docker, network aliases can be used to allow multiple containers to respond to the same DNS name on a custom network. Among other things, this is indispensable in microservices architectures where service discovery is a very important issue.

Security Implications of IP Aliasing

Though IP aliasing has a multitude of advantages, the issue of security deserves also to be looked into. Among other things, the more IP addresses you put, the larger the possible security breach of a system. The network administrators must guarantee the applications are protected with:

  • Configurations of a firewall that will secure all the IP aliases
  • Intrusion Detection Systems (IDS) to record the traffic of all IP addresses
  • Periodically checking the use and need of each IP alias
  • Enabling of appropriate security tools for those services bound to specific IP aliases

Conclusion

Putting a new IP address as an alias into Ubuntu is a highly efficient process as their utility of Netplan helps greatly. Whether you are using Ubuntu 24.04 or 22.04, the steps remain the same including editing the Netplan configuration file, adding the new IP address, and applying the changes. A system with multiple IP addresses on a single network interface of a single computer can be used to do different tasks on such a network. The ability to respond to several IP addresses on one network interface becomes very useful in several networking situations.

Through these steps, you can increase the Ubuntu computer networking capabilities quickly and effectively. The sequence is always to first back up existing configurations then to make changes followed by in-depth test post-installation. With these skills, a network infrastructure manager or an IT technician can effectively manage and optimize his Ubuntu-powered network infrastructure to cater to diverse networking requirements.

Ubuntu
29.11.2024
Reading time: 6 min

Similar

Ubuntu

How to Install and Configure SSH on Ubuntu 22.04

SSH is a network protocol that provides a secure connection between a client and a server. All communication is encrypted, preventing theft of data transmitted over the network and other remote network attacks. Let’s say you have ordered a cloud server from Hostman. You will need SSH installed and configured to connect to and administer the server. The guide below will describe how to install SSH on Ubuntu 22.04 and configure it. Prerequisites Before proceeding with the installation and configuration of the Secure Shell service, ensure the following requirements are met: Linux Command Line Skills for Configuration Having a solid grasp of basic Linux commands like sudo, apt, nano, and systemctl is essential when setting up the service. These commands will be frequently used during the installation and configuration process. It's crucial to be comfortable working within the command line environment to manage the service effectively. Root or Sudo Access for Setup To install and configure the server, administrative (root) privileges are required. Users must either have sudo access or be logged in as root. Without these privileges, the setup process cannot proceed. Internet Connection for Package Download A stable internet connection is necessary to install the OpenSSH server and any additional related packages. Without a functional connection, the system cannot retrieve the required software components. Configuring Firewall for Access If a firewall, like ufw, is enabled on the system, it may block remote access by default. It is essential to configure your firewall to allow incoming connections. Use ufw or another firewall tool to ensure port 22 is open and accessible. Access to the System (Local or Remote) You need physical access to your machine to configure the service locally, or it must be remotely accessible via its IP address. Ensure the system is properly connected to the network to establish a connection. Don't forget, that you can deploy your cloud server fast and cheap by choosing our VPS Server Hosting Step 1: Prepare Ubuntu The first thing you need to do before you start installing SSH on Ubuntu is to update all apt packages to the latest versions. To do this, use the following command: sudo apt update && sudo apt upgrade Step 2: Install SSH on Ubuntu OpenSSH is not pre-installed on the system, so let's install it manually. To do this, type in the terminal: sudo apt install openssh-server The installation of all the necessary components will begin. Answer "Yes" to all the system prompts.  After the installation is complete, go to the next step to start the service. Step 3: Start SSH Now you need to enable the service you just installed using the command below: sudo systemctl enable --now ssh On successful startup, you will see the following system message. The --now key helps you launch the service and simultaneously set it to start when the system boots. To verify that the service is enabled and running successfully, type: sudo systemctl status ssh The output should contain the Active: active (running) line, which indicates that the service is successfully running. If you want to disable the service, execute:  sudo systemctl disable ssh It disables the service and prevents it from starting at boot. Step 4: Configure the firewall Before connecting to the server via SSH, check the firewall to ensure it is configured correctly. In our case, we have the UFW installed, so we will use the following command: sudo ufw status In the output, you should see that SSH traffic is allowed. If you don't have it listed, you need to allow incoming SSH connections. This command will help with this: sudo ufw allow ssh Step 5: Connect to the server Once you complete all the previous steps, you can log into the server using the SSH protocol. To do this, you will need the server's IP address or domain name and the name of a user created on the server. In the terminal line, enter the command: ssh username@IP_address Or:  ssh username@domain Important: To successfully connect to a remote server, SSH must be installed and configured on the remote server and the user's computer from which you make the connection.  - Step 6 (optional): Create Key Pair for Secure Authentication For enhanced security, consider configuring a key pair instead of relying on password authentication. To generate one, use the following command: ssh-keygen Step 7: Configure SSH Having completed the previous five steps, you can already connect to the server remotely. However, you can further increase the connection's security by changing the default connection port to another or changing the password authentication to key authentication. These and other changes require editing the SSH configuration file. The main OpenSSH server settings are stored in the main configuration file sshd_config (location: /etc/ssh). Before you start editing, you should create a backup of this file:  sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.initial If you get any errors after editing the configuration file, you can restore the original file without problems. After creating the backup, you can proceed to edit the configuration file. To do this, open it using the nano editor: sudo nano /etc/ssh/sshd_config In the file, change the port to a more secure one. It is best to set values from the dynamic range of ports (49152 - 65535) and use different numbers for additional security. For example, let's change the port value to 49532. To do this, we uncomment the corresponding line in the file and change the port as shown in the screenshot below. In addition to this setting, we recommend changing the password authentication mode to a more secure key authentication mode. To do this, uncomment the corresponding line and make sure the value is "Yes", as shown in the screenshot. Now, let's prohibit logging on to the server as a superuser by changing the corresponding line as shown in the picture below. There are other settings you can configure to increase the server security:  UseDNS checks if the hostname matches its IP address. The value "Yes" enables this parameter. PermitEmptyPasswords prohibits using empty passwords for authentication if the value is "No." MaxAuthTries limits the number of unsuccessful attempts to connect to the server within one communication session.  AllowUsers and AllowGroups are responsible for the list of users and groups allowed to access the server: # AllowUsers User1, User2, User3# AllowGroups Group1, Group2, Group3 Login GraceTime sets the time provided for successful authorization. We recommend reducing the value of this parameter by four times. ClientAliveInterval limits the time of user inactivity. After exceeding the specified limit, the user is disconnected. After making all the changes in the main configuration file, save them and close the editor.  Restart the service to make the changes take effect: sudo systemctl restart ssh If you have changed the port in the configuration file, you should connect using the new port:  ssh -p port_number username@IP_address Or: ssh -p port_number_port_username@domain Troubleshooting Connection Issues Ensure the service is running with: sudo systemctl status ssh Restart it if necessary: sudo systemctl restart ssh Check firewall settings to allow traffic on port 22: sudo ufw allow 22 Confirm the system is reachable by running: ping <server-ip-address> Disabling the Service If you need to disable remote access for any reason, follow these steps: Stop the Service To temporarily stop accepting connections: sudo systemctl stop ssh Prevent Automatic Startup To disable it from starting on reboot: sudo systemctl disable ssh Confirm Inactive Status Verify that the service is no longer running: sudo systemctl status ssh Uninstall the Server If the service is no longer needed, remove it and its associated configuration files: sudo apt remove openssh-server Conclusion This article presents a step-by-step guide on installing and configuring SSH in Ubuntu 22.04 and describes how to edit the main configuration file to improve security. We hope this guide helps you to set up a secure remote connection to your Ubuntu server.To see more about SSH keys click here.
05 June 2025 · 7 min to read
Ubuntu

How to Install VNC on Ubuntu

If you need to interact with a remote server through a graphical interface, you can use VNC technology.VNC (Virtual Network Computing) allows users to establish a remote connection to a server over a network. It operates on a client-server architecture and uses the RFB protocol to transmit screen images and input data from various devices (such as keyboards or mice). VNC supports multiple operating systems, including Ubuntu, Windows, macOS, and others. Another advantage of VNC is that it allows multiple users to connect simultaneously, which can be useful for collaborative work on projects or training sessions. In this guide, we will describe how to install VNC on Ubuntu, using a Hostman cloud server with Ubuntu 22.04 as an example. Step 1: Preparing to Install VNC Before starting the installation process on both the server and the local machine, there are a few prerequisites to review.  Here is a list of what you’ll need to complete the installation: A Server Running Ubuntu 22.04. In this guide, we will use a cloud server from Hostman with minimal hardware configuration. A User with sudo Privileges. You should perform the installation as a regular user with administrative privileges. Select a Graphical Interface. You’ll need to choose a desktop environment that you will use to interact with the remote server after installing the system on both the server and the local machine. A Computer with a VNC Client Installed.  Currently, the only way to communicate with a rented server running Ubuntu 22.04 is through the console. To enable remote management via a graphical interface, you’ll need to install a desktop environment along with VNC on the server. Below are lists of available VNC servers and desktop environments that can be installed on an Ubuntu server. VNC Servers: TightVNC Server. One of the most popular VNC servers for Ubuntu. It is easy to set up and offers good performance. RealVNC Server. RealVNC provides a commercial solution for remote access to servers across various Linux distributions, including Ubuntu, Debian, Fedora, Arch Linux, and others. Desktop Environments: Xfce. A lightweight and fast desktop environment, ideal for remote sessions over VNC. It uses fewer resources than heavier desktop environments, making it an excellent choice for servers and virtual machines. GNOME. The default Ubuntu desktop environment, offering a modern and user-friendly interface. It can be used with VNC but will consume more resources than Xfce. KDE Plasma. Another popular desktop environment that provides a wide range of features and a beautiful design. The choice of VNC server and desktop environment depends on the user’s specific needs and available resources. TightVNC and Xfce are excellent options for stable remote sessions on Ubuntu, as they do not require high resources. In the next step, we will describe how to install them on the server in detail. Step 2: Installing the Desktop Environment and VNC Server To install the VNC server on Ubuntu along with the desktop environment, connect to the server and log in as a regular user with administrative rights. Update the Package List  After logging into the server, run the following command to update the packages from the connected repositories: sudo apt update Install the Desktop Environment  Next, install the previously selected desktop environment. To install Xfce, enter: sudo apt install xfce4 xfce4-goodies Here, the first package provides the basic Xfce desktop environment, while the second includes additional applications and plugins for Xfce, which are optional. Install the TightVNC Server  To install TightVNC, enter: sudo apt install tightvncserver Start the VNC Server  Once the installation is complete, initialize the VNC server by typing: vncserver This command creates a new VNC session with a specific session number, such as :1 for the first session, :2 for the second, and so on. This session number corresponds to a display port (for example, port 5901 corresponds to :1). This allows multiple VNC sessions to run on the same machine, each using a different display port. During the first-time setup, this command will prompt you to set a password, which will be required for users to connect to the server’s graphical interface. Set the View-Only Password (Optional)  After setting the main password, you’ll be prompted to set a password for view-only mode. View-only mode allows users to view the remote desktop without making any changes, which is helpful for demonstrations or when limited access is needed. If you need to change the passwords set above, use the following command: vncpasswd Now you have a VNC session. In the next step, we will set up VNC to launch the Ubuntu server with the installed desktop environment. Step 3: Configuring the VNC Server The VNC server needs to know which desktop environment it should connect to. To set this up, we’ll need to edit a specific configuration file. Stop Active VNC Instances  Before making any configurations, stop any active VNC server instances. In this guide, we’ll stop the instance running on display port 5901. To do this, enter: vncserver -kill :1 Here, :1 is the session number associated with display port 5901, which we want to stop. Create a Backup of the Configuration File  Before editing, it’s a good idea to back up the original configuration file. Run: mv ~/.vnc/xstartup ~/.vnc/xstartup.bak Edit the Configuration File  Now, open the configuration file in a text editor: nano ~/.vnc/xstartup Replace the contents with the following: #!/bin/bashxrdb $HOME/.Xresourcesstartxfce4 & #!/bin/bash – This line is called a "shebang," and it specifies that the script should be executed using the Bash shell. xrdb $HOME/.Xresources – This line reads settings from the .Xresources file, where desktop preferences like colors, fonts, cursors, and keyboard options are stored. startxfce4 & – This line starts the Xfce desktop environment on the server. Make the Configuration File Executable To allow the configuration file to be executed, use: chmod +x ~/.vnc/xstartup Start the VNC Server with Localhost Restriction Now that the configuration is updated, start the VNC server with the following command: vncserver -localhost The -localhost option restricts connections to the VNC server to the local host (the server itself), preventing remote connections from other machines. You will still be able to connect from your computer, as we’ll set up an SSH tunnel between it and the server. These connections will also be treated as local by the VNC server. The VNC server configuration is now complete. Step 4: Installing the VNC Client and Connecting to the Server Now, let’s proceed with installing a VNC client. In this example, we’ll install the client on a Windows 11 computer. Several VNC clients support different operating systems. Here are a few options:  RealVNC Viewer. The official client from RealVNC, compatible with Windows, macOS, and Linux. TightVNC Viewer. A free and straightforward VNC client that supports Windows and Linux. UltraVNC. Another free VNC client for Windows with advanced remote management features. For this guide, we’ll use the free TightVNC Viewer. Download and Install TightVNC Viewer Visit the official TightVNC website, download the installer, and run it. In the installation window, click Next and accept the license agreement. Then, select the custom installation mode and disable the VNC server installation, as shown in the image below. Click Next twice and complete the installation of the VNC client on your local machine. Set Up an SSH Tunnel for Secure Connection To encrypt your remote access to the VNC server, use SSH to create a secure tunnel. On your Windows 11 computer, open PowerShell and enter the following command: ssh -L 56789:localhost:5901 -C -N -l username server_IP_address Make sure that OpenSSH is installed on your local machine; if not, refer to Microsoft’s documentation to install it. This command configures an SSH tunnel that forwards the connection from your local computer to the remote server over a secure connection, making VNC believe the connection originates from the server itself. Here’s a breakdown of the flags used: -L sets up SSH port forwarding, redirecting the local computer’s port to the specified host and server port. Here, we choose port 56789 because it is not bound to any service. -C enables compression of data before transmitting over SSH. -N tells SSH not to execute any commands after establishing the connection. -l specifies the username for connecting to the server. Connect with TightVNC Viewer After creating the SSH tunnel, open the TightVNC Viewer and enter the following in the connection field: localhost:56789 You’ll be prompted to enter the password created during the initial setup of the VNC server. Once you enter the password, you’ll be connected to the VNC server, and the Xfce desktop environment should appear. Stop the SSH Tunnel To close the SSH tunnel, return to the PowerShell or command line on your local computer and press CTRL+C. Conclusion This guide has walked you through the step-by-step process of setting up VNC on Ubuntu 22.04. We used TightVNC Server as the VNC server, TightVNC Viewer as the client, and Xfce as the desktop environment for user interaction with the server. We hope that using VNC technology helps streamline your server administration, making the process easier and more efficient. We're prepared more detailed instruction on how to create server on Ubuntu if you have some trouble deploying it.
30 May 2025 · 8 min to read
Ubuntu

How to Install Google Chrome on Ubuntu 24.04

If you started using the internet post 2008, it is very likely that your first interaction over the internet was via Google Chrome web browser. People were frustrated with Microsoft Internet Explorer (which has reached its end of life and has now been discontinued), so when Google launched its proprietary product, Google Chrome, it was met with great demand, and hundreds of thousands of people switched to Chrome from Internet Explorer.  The reason for this switch was obvious, Chrome was definitely much faster and sleek in comparison to Internet Explorer and it offered a unique user experience. Within 4 years after its launch date, Chrome overtook Internet Explorer in terms of having the most users. Let’s switch gears now and move to the crucial part where we’ll talk about downloading and installing Chrome on Ubuntu 24.04 LTS which happens to be the latest OS at the time. Method 1: Installing Google Chrome via Graphical Interface (GUI) The first method is straight as an arrow and needs no extra skills other than the ability to operate a personal computer. Go ahead and search the term ‘Google Chrome’ in the browser bar.  Of course, you need a browser for this. Nothing to worry about as Ubuntu has a browser that comes built-in, this built-in browser is Firefox. Follow along, see where the arrows are pointing in the screenshots and download the 64 bit .deb (For Debian/Ubuntu).  Once you select the right version, go ahead and click on Accept and Install. Go to the directory where this package is downloaded, in my case, it is downloaded within my Downloads directory. Click on the file twice so it opens up in the Software Center where you will see a green Install button. Click that. Again, click on Install. After following along, complete the authentication by putting in your password. After installation is done, go to apps and search for ‘Google Chrome’. You can click on it to open it and then you can start using it.  Method 2: Installing Google Chrome via Terminal Update Package Information Updating package information is easy, run the update command:  sudo apt update Download Chrome with wget Use the wget utility to download Chrome from the provided URL: wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb This URL is the external source from where you can acquire the stable version of Chrome. Chrome is now downloaded but not yet installed. Install Chrome using dpkg To install this package you need to use the Debian package manager dpkg with the -i flag which indicates the installation. sudo dpkg -i google-chrome-stable_current_amd64.deb Fix Dependency Errors During our procedure, we didn’t come across any dependency error, if you face any then you can use the following command: sudo apt install -f Or: sudo apt-get install -f Run Google Chrome You can either open the browser from GUI or you can run this command and open the browser from within the terminal: google-chrome-stable Method 3: Installing Beta or Unstable Versions of Google Chrome Installing Google Chrome Beta Some developers get super excited when it comes to testing the versions of different products before the general public. If you are one of them, you can install Google Chrome’s beta version. Download Beta Google Chrome  Use wget with the direct URL pointing to an external source from where you can download the beta package of the browser: wget https://dl.google.com/linux/direct/google-chrome-beta_current_amd64.deb Install Beta Google Chrome sudo dpkg -i google-chrome-beta_current_amd64.deb If dependency errors pop up, just use the command shown in Method 2. Run Beta Google Chrome  Open beta version using terminal: google-chrome-beta The beta version of this browser runs smoothly without any issues, if you see any warnings in the terminal simply ignore it and you can use the beta version without any hassle.  Install Unstable Google Chrome If you are someone who likes to do testing way in advance and you are okay with multiple crashes, you can install Unstable Google Chrome.  Unstable Google Chrome has feature access before Beta Chrome. Main difference between Beta Google Chrome and Unstable Google Chrome is that Beta is updated every 4 weeks while Unstable is updated every day. Download Unstable Google Chrome  wget https://dl.google.com/linux/direct/google-chrome-unstable_current_amd64.deb Install Unstable Google Chrome sudo dpkg -i google-chrome-unstable_current_amd64.deb Run Unstable Google Chrome google-chrome-unstable Unstable versions of Chrome run smoothly, warnings or errors might pop up but you can ignore those, it works ok.  Additional Tips As Ubuntu’s default repository does not have Chrome due to proprietary rights, Google Chrome creates its own repo in your system and it updates each time you update your default repository. sudo apt update && sudo apt upgrade Conclusion A vast number of Linux users prioritize their privacy and prefer open-source products. If this is you, you might be aware that Google Chrome is a proprietary product and is owned by Alphabet (parent company of Google) which means it's not open source. If you are looking for something similar and also open source then Chromium is a great browser to consider. Google Chrome came with the concept of extensions and Google enabled them by default in 2009. These extensions extended the performance of the Chrome web browser and offered additional options to accomplish many things in much easier ways than previously. The main thing that really made Chrome “The King of The Market” was its speed and the ability to get updates for new versions. Google Chrome was able to fix issues much faster than competitors and users had a fine way to access all Google Products in one place.  The birth of the Chrome browser was the result of the problems Google workers faced with the browsers in the market at the time. They created a ‘Just Built For Them’ product which was actually what was needed in the market. Internet Explorer was the most used browser at the time but it was slow. It took Google Chrome just a few years to beat Internet Explorer in the market and in the upcoming decade, it completely wiped it off. 
23 May 2025 · 5 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support