Sign In
Sign In

How to Configure an Additional IP as an Alias in Ubuntu

How to Configure an Additional IP as an Alias in Ubuntu
Adnene Mabrouk
Technical writer
Ubuntu
29.11.2024
Reading time: 6 min

In the network administration world, the task of setting up additional IP addresses on a single network interface is commonly performed. The technique of IP aliasing, which is a system for a device to reply to several IP addresses on one network interface, penetrates this model. All Ubuntu users should be familiar with modifying and applying these settings to ensure robust networking administration.

This guide will detail the methods of creating an extra IP address in Ubuntu as an alias for both the versions of Ubuntu 24.04 and 22.04.

Prerequisites

Obviously, one first needs to set up the system in a way that would allow for the manipulation of all IP addresses over the same network, using Ubuntu. Here is the list:

  • A system running either Ubuntu 24.04 or Ubuntu 22.04
  • Admin access to the system (sudo privileges)
  • Basic knowledge of command-line interface operations
  • An additional IP address assigned by a network administrator or ISP
  • Network interface name information (e.g., eth0, ens3)

When troubleshooting problems, we are in danger of causing even more difficulty, as network interfaces provided by networks are not reliable. With this in mind, it would be wise to keep a backup of the configuration files before proceeding with the changes.

And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS.

Configuring an Additional IP Address within Ubuntu 24.04

Ubuntu 24.04, the latest long-term support release, uses Netplan for network configuration. This configuration is also applicable for Ubuntu 22.04 and beyond.

Netplan is a utility for configuring networking on Linux systems. Here's how to create an additional IP address:

  1. Check the Network Interface

Primarily, it is necessary to define the network interface that will carry the new address. You can achieve this by running the following command:

ip addr show

The output of this command will display all the interfaces. Find the name of the interface (e.g. ens3, eth0) currently in use.

  1. Edit the Netplan Configuration File

Normally Netplan configuration files are found in the /etc/netplan/ directory. The file name may be different but most of them end with a .yaml extension. To change the file, use a text editor with root privileges:

sudo nano /etc/netplan/50-cloud-init.yaml
  1. Insert the New IP Address

In the YAML file, add the new IP address under the addresses section of the appropriate network interface. The configuration may appear like this:

network:
  version: 2
  renderer: networkd
  ethernets:
	eth0:
  	  addresses:
  	  - "195.133.93.70/24"
  	  - "166.1.227.189/24" #New IP address
  	  - "192.168.1.2/24" #Private IP address
  	nameservers:
    	  addresses:
    	  - "1.1.1.1"
    	  - "1.0.0.1"
  	dhcp4: false
  	dhcp6: false
  	routes:
  	- to: "0.0.0.0/0"
        via: "195.133.93.1"
  1. Apply the Changes

Upon saving your edits, you need to apply the new version of the configuration by running this command:

sudo netplan apply
  1. Validate the Configuration

After completing the steps above, you will need to repeat the ip addr show command to confirm that the new IP address is in place. Now the output of this command should also include the new IP address.

Additional Considerations

  • Persistent Configuration

The choices made by Netplan are stable and will last through the restart of the device. But, it's a good idea to verify the configuration with a system reboot to make sure everything goes well after the restart.

  • Firewall Configuration

When adding a new IP address, you may need to update the firewall rules. Ubuntu traditionally uses UFW (Uncomplicated Firewall). To avoid blocking the new IP, you will have to create new rules to UFW.

  • Network Services

If the system has some services running which are linked to specific IP addresses, then you must update their configurations to recognize and utilize the new IP address as well.

  • IPv6 Considerations

The above examples talk about IPv4. If you have to use IPv6 addresses, then the procedure is relatively the same; you will have to use a different style of address though. Netplan supports both IPv4 and IPv6 configurations.

Troubleshooting

In case of issues emerging during the configuration stage, try:

  • Check for syntax errors in the YAML file with the command: sudo netplan --debug generate.
  • Ensure that there are no conflicts with other devices using the same IP address on the network.
  • Verify correct setting of the subnet mask and the gateway.
  • Check the system logfile for error messages: journalctl -xe.

Advanced IP Aliasing Techniques

Network administrators can see how advanced IP aliasing plays a key role in improving network management: virtual interfaces make it possible to have several logical interfaces on a physical network interface, wherein all have their IP and network settings.

  • Dynamic IP Aliasing

There are cases where network administrators would have to implement dynamic IP aliasing. With the help of scripts, it is possible to add or remove IP aliases according to certain conditions or occurrences. For example, a script can be made to insert an IP alias whenever a particular service starts and remove it every time the service stops.

  • IP Aliasing in Containerized Environments

The popularity of containerization in the present age necessitates having IP aliasing in order to control network configuration of Docker containers and any other containerized applications. In such cases, IP aliases are quite often employed to expose multiple services on a container at different IP addresses or assist containers to communicate with one another.

  • Docker Network Aliases

In Docker, network aliases can be used to allow multiple containers to respond to the same DNS name on a custom network. Among other things, this is indispensable in microservices architectures where service discovery is a very important issue.

Security Implications of IP Aliasing

Though IP aliasing has a multitude of advantages, the issue of security deserves also to be looked into. Among other things, the more IP addresses you put, the larger the possible security breach of a system. The network administrators must guarantee the applications are protected with:

  • Configurations of a firewall that will secure all the IP aliases
  • Intrusion Detection Systems (IDS) to record the traffic of all IP addresses
  • Periodically checking the use and need of each IP alias
  • Enabling of appropriate security tools for those services bound to specific IP aliases

Conclusion

Putting a new IP address as an alias into Ubuntu is a highly efficient process as their utility of Netplan helps greatly. Whether you are using Ubuntu 24.04 or 22.04, the steps remain the same including editing the Netplan configuration file, adding the new IP address, and applying the changes. A system with multiple IP addresses on a single network interface of a single computer can be used to do different tasks on such a network. The ability to respond to several IP addresses on one network interface becomes very useful in several networking situations.

Through these steps, you can increase the Ubuntu computer networking capabilities quickly and effectively. The sequence is always to first back up existing configurations then to make changes followed by in-depth test post-installation. With these skills, a network infrastructure manager or an IT technician can effectively manage and optimize his Ubuntu-powered network infrastructure to cater to diverse networking requirements.

Ubuntu
29.11.2024
Reading time: 6 min

Similar

Ubuntu

Installing and Configuring cloud-init on Ubuntu

cloud-init is the de facto industry standard for automated initialization of virtual machines in cloud environments. This powerful configuration tool is activated at the first boot of an instance and allows execution of a predefined set of tasks without manual intervention. Its key functions include: Automating basic system setup, including assigning a hostname. User account management: creating users, assigning permissions, and configuring authentication mechanisms. Automatic deployment of SSH keys for secure access. Configuration of network interfaces according to specified parameters. Operations with disk storage, such as mounting and formatting volumes. Execution of custom scripts for post-installation configuration, which may include installing software, deploying application code, and applying fine-tuned settings. Although cloud-init is primarily designed for public clouds (AWS, Google Cloud, Azure, Hostman), it can also be used on local virtual machines and even on physical servers to standardize their initial setup. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. In this article, we will look at how to install, configure, and use cloud-init on Ubuntu. Installation In most Ubuntu images, cloud-init is already preinstalled. Canonical (the developer of Ubuntu) also releases images called Ubuntu Cloud Images, specially prepared and optimized for running in cloud environments. In Hostman, all Ubuntu images already include cloud-init. You can additionally check for cloud-init with the command: cloud-init --version If the command outputs a version (as shown in the screenshot above), then cloud-init is already installed in the system. If the response is Command cloud-init not found, install the utility with: apt update && apt -y install cloud-init After installation, cloud-init will automatically run at every system boot. Note that cloud-init runs before the server connects to the network. Configuration File Structure All cloud-init configuration files are located in /etc/cloud/: /etc/cloud/clean.d/ — directory for cleanup scripts. These scripts are executed when the command cloud-init clean is run. /etc/cloud/cloud.cfg — the main configuration file. This sets the default settings for all initialization stages. /etc/cloud/cloud.cfg.d/ — directory for user configuration files with the .cfg extension. Files are processed in alphabetical order and override settings from the main file. This is the preferred location for custom configurations. /etc/cloud/templates/ — contains templates used by cloud-init to generate system files. /var/lib/cloud/ — stores cache, data, and scripts generated during cloud-init execution. Modules Modules in cloud-init are separate executable components that perform specific configuration tasks when a VM first boots. Each module is responsible for its own area: network configuration, user creation, package installation, etc. An important feature of modules is their execution order: they do not run randomly, but in a strict sequence consisting of stages: Init Stage (Initialization stage): Runs immediately after mounting the root filesystem. Modules needed to prepare the system for main configuration are executed here (e.g., mounting additional disks). Config Stage (Configuration stage): The main stage where most modules run: network setup, package installation, SSH key setup, user creation. Final Stage: Executes modules for tasks that should occur at the very end, such as sending system readiness notifications or running user scripts. Local Usage of cloud-init Let’s test cloud-init locally, i.e., run it after the server has already booted. We will create two scenarios: The first scenario will create a new user named new-admin, assign a password, and grant administrator rights. The second scenario will install the packages atop, tree, net-tools. Since we will use a password for the new user, we need to generate its hash, as all passwords (and other secrets) are specified in plain text by default. . To get a hash, install the whois package, which contains the mkpasswd utility: apt -y install whois Run the utility with the SHA-512 hashing algorithm: mkpasswd -m sha-512 --stdin Enter the password for the user and press Enter. The utility will generate a password hash. Copy this hash for later use. As noted earlier, user configuration files are stored in /etc/cloud/cloud.cfg.d. Create a new file 99-new-admin-config.cfg:nano /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg Use the following content: #cloud-config users: - name: new-admin passwd: $6$BSAzGG4SFvsn//vD$ds8oM53OIs6qXiCIhMTl10bwQfe9u5WxGKADzwyPsODniGhYAXCUOAoyUkJLs.H9z0PxqLr7BxEJ18hT2VEyR/ sudo: ALL=(ALL) ALL shell: /bin/bash groups: sudo Check syntax for errors: cloud-init schema --config-file /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg If there are no errors, the command will return Valid schema. Before running the script, clear the previous configuration: cloud-init clean Run the configuration:cloud-init single --name users-groups --file /etc/cloud/cloud.cfg.d/99-new-admin-config.cfg After the new configuration is applied, check for the new-admin user: id new-admin Next, install the packages. Create a new file: nano /etc/cloud/cloud.cfg.d/99-install-packages.cfg Use the following content: #cloud-config package_update: true package_upgrade: true packages: - atop - tree - net-tools Check syntax: cloud-init schema --config-file /etc/cloud/cloud.cfg.d/99-install-packages.cfg Clear configuration:  cloud-init clean Run the script to install the packages: cloud-init single --name package_update_upgrade_install --file /etc/cloud/cloud.cfg.d/99-install-packages.cfg Verify the installed packages: dpkg -l | grep -E "atop|tree|net-tools" Using cloud-init in Hostman Hostman cloud servers running Linux support cloud-init via the control panel. Scenarios can be configured both during server ordering and later during usage. Let’s look at the practical use of cloud-init. We will create a scenario that will: Create a new user named new-usr; Configure SSH key authentication for new-usr; Install two packages: mc, ncdu; Change the hostname to hostman-server; Create a file test-file.txt in the /tmp directory. If cloud-init scripts have already been run on the server, run cloud-init clean before applying the configuration below. Our script will run when creating a virtual server; we can add it at step 7: Since SSH key authentication will be used for the new user, generate keys in advance. On another device (Windows, macOS, Linux), run the command: ssh-keygen Save the keys in the default directory (.ssh in the home directory). Then obtain the public key value (.pub file): cat ~/.ssh/id_ed25519.pub Replace id_ed25519.pub with your own filename if different. In the control panel, in the cloud-init block, enter the following syntax: #cloud-config packages: - mc - ncdu users: - name: "new-usr" groups: sudo shell: /bin/bash sudo: ['ALL=(ALL) NOPASSWD:ALL'] ssh_authorized_keys: - ssh-rsa AAAAC3NzaC1lZDI1NTE5AAAAIFoUTI5BKDBDgKLIMpM71m/YI7dTtFKQiSIivRk9pUbs alex@DESKTOP-VTUJHJ9 lock_passwd: true hostname: hostman-server preserve_hostname: false runcmd: - [touch, /tmp/test-file.txt] In the ssh_authorized_keys field, enter your own public key. Complete the server order by clicking “Order.” Once the server is created, connect via SSH with the new user and verify that all specified actions were completed. Verify the user: id new-usr Verify installed packages: dpkg -l | grep -E "mc|ncdu" Verify hostname: hostname Verify file existence: ls -lah /tmp/test-file.txt Conclusion cloud-init is a powerful tool for automating the initial setup of servers in Ubuntu. With its capabilities, you can deploy fully configured servers in seconds, minimize human error, and easily scale infrastructure. The main strength of cloud-init lies in its ability to transform a virtual machine template into a fully configured, production-ready server instance without manual intervention. Automating network configuration, security updates, user creation, and software deployment are the advantages that make it indispensable for DevOps engineers and system administrators.
04 September 2025 · 7 min to read
Java

Switching between Java Versions on Ubuntu

Managing multiple Java versions on Ubuntu is essential for developers working on diverse projects. Different applications often require different versions of the Java Development Kit (JDK) or Java Runtime Environment (JRE), making it crucial to switch between these versions efficiently. Ubuntu provides powerful tools to handle this, and one of the most effective methods is using the update-java-alternatives command. Switching Between Java Versions In this article, the process of switching between Java versions using updata-java-alternatives will be shown. This specialized tool simplifies the management of Java environments by updating all associated commands (such as java, javac, javaws, etc.) in one go.  And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. Overview of Java version management A crucial component of development is Java version control, especially when working on many projects with different Java Runtime Environment (JRE) or Java Development Kit (JDK) needs. In order to prevent compatibility problems and ensure efficient development workflows, proper management ensures that the right Java version is utilized for every project. Importance of using specific Java versions You must check that the Java version to be used is compatible with the application, program, or software running on the system. Using the appropriate Java version ensures that the product runs smoothly and without any compatibility issues. Newer versions of Java usually come with updates and security fixes, which helps protect the system from vulnerabilities. Using an out-of-date Java version may expose the system to security vulnerabilities. Performance enhancements and optimizations are introduced with every Java version. For maximum performance, use a Java version that is specific to the application. Checking the current Java version It is important to know which versions are installed on the system before switching to other Java versions.  To check the current Java version, the java-common package has to be installed. This package contains common tools for the Java runtimes including the update-java-alternatives method. This method allows you to list the installed Java versions and facilitates switching between them. Use the following command to install the java-common package: sudo apt-get install java-common Upon completing the installation, verify all installed Java versions on the system using the command provided below: sudo update-java-alternatives --list The report above shows that Java versions 8 and 11 are installed on the system. Use the command below to determine which version is being used at the moment. java -version The displayed output indicates that the currently active version is Java version 11. Installing multiple Java versions Technically speaking, as long as there is sufficient disk space and the package repositories support it, the administrator of Ubuntu is free to install as many Java versions as they choose. Follow the instructions below for installing multiple Java versions. Begin by updating the system using the following command:   sudo apt-get update -y && sudo apt-get upgrade -y To add another version of Java, run the command below. sudo apt-get install <java version package name> In this example, installing Java version 17 can be done by running:  sudo apt-get install openjdk-17-jdk openjdk-17-jre Upon completing the installation, use the following command to confirm the correct and successful installation of the Java version: sudo update-java-alternatives --list Switching and setting the default Java version To switch between Java versions and set a default version on Ubuntu Linux, you can use the update-java-alternatives command.  sudo update-java-alternatives --set <java_version> In this case, the Java version 17 will be set as default: sudo update-java-alternatives --set java-1.17.0-openjdk-amd64 To check if Java version 17 is the default version, run the command:  java -version The output shows that the default version of Java is version 17. Managing and Switching Java Versions in Ubuntu Conclusion In conclusion, managing multiple Java versions on Ubuntu Linux using update-java-alternatives is a simple yet effective process. By following the steps outlined in this article, users can seamlessly switch between different Java environments, ensuring compatibility with various projects and taking advantage of the latest features and optimizations offered by different Java versions. Because Java version management is flexible, developers may design reliable and effective Java apps without sacrificing system performance or stability.
22 August 2025 · 4 min to read
Ubuntu

How to Install and Configure SSH on Ubuntu 22.04

A secure connection between a client and a server is made possible via the SSH network protocol. Since all communications are encrypted, distant network attacks and data theft across the network are avoided. Let’s say you have ordered a cloud server from Hostman. You will need SSH installed and configured to connect to and administer the server. The guide below will describe how to install SSH on Ubuntu 22.04 and configure it. SSH Key configuration is pretty simple on Ubuntu Prerequisites Before proceeding with the installation and configuration of the Secure Shell service, ensure the following requirements are met: Linux Command Line Skills for Configuration Having a solid grasp of basic Linux commands like sudo, apt, nano, and systemctl is essential when setting up the service. These commands will be frequently used during the installation and configuration process. It's crucial to be comfortable working within the command line environment to manage the service effectively. Root or Sudo Access for Setup To install and configure the server, administrative (root) privileges are required. Users must either have sudo access or be logged in as root. Without these privileges, the setup process cannot proceed. Internet Connection for Package Download A stable internet connection is necessary to install the OpenSSH server and any additional related packages. Without a functional connection, the system cannot retrieve the required software components. Configuring Firewall for Access If a firewall, like ufw, is enabled on the system, it may block remote access by default. It is essential to configure your firewall to allow incoming connections. Use ufw or another firewall tool to ensure port 22 is open and accessible. Access to the System (Local or Remote) To configure the service locally, you must have physical access to your computer; otherwise, it must be remotely accessible through its IP address. To connect, make sure the system is correctly linked to the network. Don't forget, that you can deploy your cloud server fast and cheap by choosing our VPS Server Hosting. Step 1: Prepare Ubuntu The first thing you need to do before you start installing SSH on Ubuntu is to update all apt packages to the latest versions. To do this, use the following command: sudo apt update && sudo apt upgrade Step 2: Install SSH on Ubuntu OpenSSH is not pre-installed on the system, so let's install it manually. To do this, type in the terminal: sudo apt install openssh-server The installation of all the necessary components will begin. Answer "Yes" to all the system prompts.  After the installation is complete, go to the next step to start the service. Step 3: Start SSH Now you need to enable the service you just installed using the command below: sudo systemctl enable --now ssh On successful startup, you will see the following system message. The --now key helps you launch the service and simultaneously set it to start when the system boots. To verify that the service is enabled and running successfully, type: sudo systemctl status ssh The output should contain the Active: active (running) line, which indicates that the service is successfully running. If you want to disable the service, execute:  sudo systemctl disable ssh It disables the service and prevents it from starting at boot. Step 4: Configure the firewall Before connecting to the server via SSH, check the firewall to ensure it is configured correctly. In our case, we have the UFW installed, so we will use the following command: sudo ufw status In the output, you should see that SSH traffic is allowed. If you don't have it listed, you need to allow incoming SSH connections. This command will help with this: sudo ufw allow ssh Step 5: Connect to the server Once you complete all the previous steps, you can log into the server using the SSH protocol. You will need the IP address or domain name of the server as well as the name of a user that was created on the server in order to complete this step. In the terminal line, enter the command: ssh username@IP_address Or:  ssh username@domain Important: To successfully connect to a remote server, SSH must be installed and configured on the remote server and the user's computer from which you make the connection.  - Step 6 (optional): Create Key Pair for Secure Authentication For enhanced security, consider configuring a key pair instead of relying on password authentication. To generate one, use the following command: ssh-keygen Step 7: Configure SSH Having completed the previous five steps, you can already connect to the server remotely. However, you can further increase the connection's security by changing the default connection port to another or changing the password authentication to key authentication. These and other changes require editing the SSH configuration file. The main OpenSSH server settings are stored in the main configuration file sshd_config (location: /etc/ssh). Before you start editing, you should create a backup of this file:  sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.initial If you get any errors after editing the configuration file, you can restore the original file without problems. After creating the backup, you can proceed to edit the configuration file. To do this, open it using the nano editor: sudo nano /etc/ssh/sshd_config In the file, change the port to a more secure one. It is best to set values from the dynamic range of ports (49152 - 65535) and use different numbers for additional security. For example, let's change the port value to 49532. To do this, we uncomment the corresponding line in the file and change the port as shown in the screenshot below. SSH Key Configuration Description in Linux Terminal In addition to this setting, we recommend changing the password authentication mode to a more secure key authentication mode. To do this, uncomment the corresponding line and make sure the value is "Yes", as shown in the screenshot. Authentication Key should be Enabled Now, let's prohibit logging on to the server as a superuser by changing the corresponding line as shown in the picture below. Don't Forget to Close Access to Root Login There are other settings you can configure to increase the server security:  UseDNS checks if the hostname matches its IP address. The value "Yes" enables this parameter. PermitEmptyPasswords prohibits using empty passwords for authentication if the value is "No." MaxAuthTries limits the number of unsuccessful attempts to connect to the server within one communication session.  AllowUsers and AllowGroups are responsible for the list of users and groups allowed to access the server: # AllowUsers User1, User2, User3# AllowGroups Group1, Group2, Group3 Login GraceTime sets the time provided for successful authorization. We recommend reducing the value of this parameter by four times. ClientAliveInterval limits the time of user inactivity. After exceeding the specified limit, the user is disconnected. After making all the changes in the main configuration file, save them and close the editor.  Restart the service to make the changes take effect: sudo systemctl restart ssh If you have changed the port in the configuration file, you should connect using the new port:  ssh -p port_number username@IP_address Or: ssh -p port_number_port_username@domain Troubleshooting Connection Issues Ensure the service is running with: sudo systemctl status ssh Restart it if necessary: sudo systemctl restart ssh Check firewall settings to allow traffic on port 22: sudo ufw allow 22 Confirm the system is reachable by running: ping <server-ip-address> Disabling the Service If you need to disable remote access for any reason, follow these steps: Stop the Service To temporarily stop accepting connections: sudo systemctl stop ssh Prevent Automatic Startup To disable it from starting on reboot: sudo systemctl disable ssh Confirm Inactive Status Verify that the service is no longer running: sudo systemctl status ssh Uninstall the Server If the service is no longer needed, remove it and its associated configuration files: sudo apt remove openssh-server Conclusion This article presents a step-by-step guide on installing and configuring SSH in Ubuntu 22.04 and describes how to edit the main configuration file to improve security. We hope this guide helps you to set up a secure remote connection to your Ubuntu server. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS.To see more about SSH keys click here.
21 August 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support