Sign In
Sign In

10 Best Python IDEs and Code Editors 2024

10 Best Python IDEs and Code Editors 2024
JC Brian Refugia
Technical writer
Infrastructure

Python IDE (Integrated Development Environment)

An integrated development environment (IDE) is a package of software tools and capabilities designed to help developers write code. An integrated environment containing tools for code editing, debugging, testing, and other development tasks is usually offered by Python IDEs. These environments provide capabilities like code completion, syntax highlighting, and project management and are intended to make the development process more efficient.

Python Code Editor

A code editor is a more basic tool designed mostly for editing code. Code editors are quick, light, and very configurable, even though they might not have all of the sophisticated capabilities of IDEs. Code editors are frequently chosen by developers due to their speed and ease of use. Code editors can be used with a variety of programming languages, and they frequently allow plugins or extensions that offer features unique to Python development.

Choosing the right Python IDE (Integrated Development Environment) or code editor is important and will have a big influence on how you build applications. Here are key factors to consider when making your choice:

  • Usability

Consider on the general usability and user interface. Especially for beginners, a straightforward and user-friendly integrated development environment (IDE) or code editor can increase productivity.

  • Features and Integrated Tools

Explore the functions that the code editor or IDE has to offer. Syntax highlighting, code completion, debugging tools, version control integration, and support for virtual environments are examples of standard characteristics. Project management features, testing frameworks, and build systems are examples of integrated tools. The IDE's built-in tools can help you optimize your productivity.

  • Flexibility 

Think about if plugins or extensions are supported by the code editor or IDE. With flexibility, you can easily incorporate third-party products and alter your environment to suit your unique requirements.

  • Compatibility

Select an IDE or code editor that is cross-platform compatible. This ensures a consistent experience if you are working on different operating systems. 

  • Language and Community Support

Make sure the tool has top-notch Python support. It may seem apparent, but selecting a tool that is tailored to Python development requirements is essential

Consider the community's strength and the developers' level of support. A thriving community guarantees easy access to extensions, tutorials, and help, and continuous support keeps the tool updated.

  • Performance

Assess the IDE's or code editor's performance, paying particular attention to how well it handles the quantity and complexity of your projects. Verify that the tool functions properly on your workstation.

  • Cost

Think about how much the IDE will cost. Some can only be used with a license, but others are free and open source. Determine whether the features, given your needs and budget, outweigh any related costs.

  • Version update and maintenance

To ensure compatibility with the most recent Python versions, introduce new features, and repair issues, regular upgrades and maintenance by the developers are necessary.

  • Customization

Being able to customize the setting to what you prefer can have an important effect on how comfortable and productive you are when developing.

10 Best Python IDEs and Code Editors in 2024

Here are the popular Python IDEs and code editors: 

  1. PyCharm
  2. Spyder
  3. Eclipse PyDev
  4. IDLE
  5. Wing

Here are the best Python Code Editor: 

  1. Emacs
  2. Visual Studio Code
  3. Sublime Text
  4. Atom
  5. VIM

PyCharm

PyCharm is widely regarded as the finest IDE for Python developers, with the majority of professional developers using it in various industries. It is a cross-platform IDE created by the Czech company JetBrains. One really useful aspect is that it provides daily advice to help you become more knowledgeable about how to use it more effectively. There are two versions available: the professional version requires payment, while the community version is available for free. Here are a few other features of this IDE.

PROS:

  • Code completion, syntax highlighting, debugging tools, testing support, and integration with well-known web frameworks

  • Intelligent code assistance

  • Built-in testing tools

  • Powerful debugger

CONS: 

  • Learning curve. PyCharm might have a steeper learning curve compared to simple editors. 

  • Cost for professional version 

  • Start-up time might be longer than a lighter weight editor. 

Spyder

Another excellent Python-based cross-platform and open-source IDE is called Spyder. It is the lightest Python IDE and goes by the name Scientific Python Development IDE. Data scientists who are proficient in integrating Matplotlib, SciPy, NumPy, Pandas, Cython, IPython, SymPy, and other open-source software are the primary users of it. It has some nice advanced features including edit, debug, and data exploration, and it comes with the Anaconda package manager distribution. Here are a few other features of this IDE.

PROS: 

  • Designed for Scientific Computing.

  • Interactive Console.

  • Integrated Variable Explore.

  • Matplotlib Integration.

  • NumPy and SciPy Integration.

CONS:

  • Heavy Resource Usage.

  • Not as Lightweight as Simple Editors.

  • Limited General-Purpose IDE Features.

Eclipse PyDev

Combining the Eclipse IDE platform with the PyDev plugin, Eclipse with PyDev is an integrated development environment (IDE) for Python development. First popularized in the Java programming community, the Eclipse IDE is an open-source, extremely extendable IDE. On the other side, Aptana Inc. created PyDev, an Eclipse plugin for the Python IDE.

PROS:

  • It is compatible with a number of programming languages, and PyDev easily interacts with it to offer Python development features.

  • It supports Django, a popular Python web framework.

  • Integrated debugger.

CONS: 

  • Some users might find the learning curve more challenging, particularly those who are unfamiliar with the Eclipse IDE or who would rather use lighter, more straightforward editors.

  • It can be resource-intensive, particularly for larger projects.

  • Challenges with Customizing Interfaces.

IDLE

IDLE is a specialized software or platform for creating Python apps. It is a feature-rich editor for writing, editing, and running Python programs. It can also be used to run single statements, much like the Python Shell. IDLE for Python would be quite beneficial, particularly for novices. 

Notable features include call hints, code context, auto-indentation, basic syntax highlighting, and auto-completion of the code. There is a debugging tool included as well. One of IDLE's fundamental functions is Stack Viewer, which aids in tracking down the fault or exception that was encountered. Customizing fonts, keys, extensions, highlights, and other elements is also possible. IDLE is freely available and open-sourced.

PROS:

  • Lightweight and simple.

  • Bundled with Python.

  • Provides basic features such as syntax highlighting, code completion, and an interactive Python shell.

CONS: 

  • Limited features for advanced development.

  • Limited customization options.

  • Lacks advanced project management features.

Wing

An integrated development environment (IDE) made especially for Python is called Wing. It is produced by Wingware and is renowned for its emphasis on giving Python developers access to an effective toolkit.

PROS:

  • Well-known for its powerful interactive debugger.

  • Provides strong code intelligence capabilities, such as syntax highlighting, code navigation, and intelligent auto-completion.

  • Allows for customizations and expansion via scripting.

CONS:

  • It is a commercial product that needs a license to use its full-featured Professional edition.

  • Users may experience slower performance and increased memory usage for large projects or less powerful machines.

Emacs

Emacs was founded by Richard Stallman in 1976. The software is completely customizable, free, and compatible with all systems. For customization, Emacs leverages a version of the robust Lisp programming language; for Python development, a variety of customization scripts are available.

PROS:

  • It comes with an integrated package system (package.el) that makes it simple for users to add and manage packages, increasing the editor's capabilities.

  • It has several powerful text editing tools, such as numerous built-in commands, comprehensive keyboard shortcuts, and sophisticated search and replace.

  • It allows users to customize virtually every aspect of the editor by writing scripts in Emacs Lisp.

CONS:

  • It has steep learning curve

  • It can be resource intensive when working with large files or complex tasks.

  • Its unconventional interface deviates from the norms of contemporary apps by largely depending on keyboard shortcuts.

Visual Studio Code

A highly customizable, lightweight code editor developed by Microsoft, with a vast selection of extensions and excellent Python support.

PROS:

  • It provides a large marketplace of extensions and supports a broad variety of programming languages right out of the box.

  • It has strong code editing tools like code navigation, syntax highlighting, and IntelliSense (code completion).

  • Integrated Git Version Control.

CONS:

  • Customization complexity

  • It can consume a large amount of system resources when working with large projects or multiple extensions.

  • Users with less powerful computers can run into performance problems.

Sublime Text

A complex and well-liked text editor for prose, markup, and code editing is called Sublime Text. It is renowned for its quickness, ease of use, and wide range of customization possibilities. Will Bond and Jon Skinner created Sublime Text.

PROS:

  • Known for its speed and performance.

  • It supports a wide range of plugins and extensions.

  • It introduces the concept of multiple selection, that allows users to make changes in various sections of a document simultaneously. 

CONS:

  • It is not free.

  • It has less frequent updates.

  • It has limited integrated tools.

Atom

GitHub created the open-source text editor Atom. It is renowned for having an up-to-date interface and being extensible and flexible. Since Atom is meant to be a hackable text editor, users can add new features and personalize the program with a variety of packages and themes.

PROS:

  • Open source and free.

  • Modern and user-friendly interface.

  • Highly extensible and customizable. 

CONS: 

  • Slower start up time.

  • Less mature ecosystem and packages and themes. 

  • Limited built-in features.

VIM

Vim is a cross-platform, open-source text editor. On macOS and UNIX computers, it comes pre-installed; however, you must download it for Windows. This text editor functions both as a stand-alone program and as a command-line interface.

PROS:

  • It allows for quick navigation, editing, and manipulation of text using keyboard shortcuts.

  • It is highly customizable and extensible.

  • It is easily accessible on a variety of servers and development environments because it comes pre-installed on many Unix-like systems.

CONS: 

  • It is not beginner-friendly.

  • Limited out-of-the-box features.

  • Steep learning curve.

In a nutshell, IDE offers a full suite of tools for coding, testing, and debugging, whereas a code editor is solely designed for editing code and is typically more lightweight and adaptable. Depending on personal preferences, project objectives, and the difficulty of the development activities, one can choose between an IDE and a code editor.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support