Sign In
Sign In

How to Use the Screen Utility in Linux

How to Use the Screen Utility in Linux
Hostman Team
Technical writer
Linux
20.02.2025
Reading time: 7 min

The Screen utility is a Linux window manager that allows you to switch between multiple processes in a single physical terminal. Screen provides a scrollable history buffer and a mechanism for copying and pasting text between windows.

With Screen, you can create new windows with different programs, close the current windows, view a list of active windows, enable and disable output logging, and switch between windows. All windows work independently, and programs continue to run even when the session is disconnected from the user's terminal. This makes Screen a useful tool for efficiently managing multiple tasks in a single terminal.

Installing the Screen Utility

The Screen may be pre-installed in the operating system or require separate installation depending on the distribution. To install Screen, use the following command:

For Ubuntu and Debian:

apt install -y screen

For CentOS and Fedora:

yum install -y screen

Or:

dnf install -y screen

Basic Commands

Let's go over the basic commands for managing Linux Screen sessions.

Starting a Screen Session

To start Screen, simply enter the following command in your terminal:

screen

This will open a Screen session, create a new window, start a shell in it, and you will see a new window. Press Enter to proceed to enter commands.

Creating a Named Session

You can name your sessions, which is especially useful when working with multiple Screen sessions. To create a named session, use the following command:

screen -S session_name

It’s always helpful to choose a descriptive name for the session.

Detaching from a Screen Session in Linux

To detach from a Screen session at any time, type:

Ctrl+a d

The program running in the Screen session will continue to run in the background after you detach.

Reattaching to a Screen Session in Linux

To resume your Screen session, use the command:

screen -r

If you have multiple Screen sessions running, you need to specify the session ID or its name after the -r parameter.

To see the list of currently running sessions, use:

screen -ls

You will see a list of sessions like this:

There are screens on:
       1468393.hostman (01/25/2025 02:07:34 PM)        (Detached)
       1466624.pts-3.1495851-user   (01/25/2025 01:54:05 PM)        (Detached)
2 Sockets in /run/screens/S-linuxize.

To resume the session with ID 1466624.pts-3.1495851-username, enter:

screen -r 1466624

To resume a session using its name, type:

screen -r session_name

Additional Options

Screen offers a variety of useful features for convenient session management in the terminal. 

You can customize each window to suit your needs, such as adjusting its size according to display settings or configuring options using a custom configuration file. 

You can also pause a session and resume it later or run Screen in daemon mode to keep it running in the background. 

Additionally, you can customize command keys, manage data flow, and enable logging. 

It's also possible to switch between windows, change their titles, and use UTF-8 encoding, making terminal work more comfortable and adaptable to different tasks.

Screen options:

  • -a: Enables all possible features for each window, maximizing functionality.

  • -A -[r|R]: Automatically adjusts all windows to fit the new screen width and height.

  • -c file: Specifies an alternate configuration file instead of the default .screenrc.

  • -d (-r): Detaches the current Screen session without terminating it so that you can reconnect later.

  • -D (-r): Terminates the active connection to a remote session, but the session itself remains running and can be resumed.

  • -D -RR: Takes all necessary actions to reconnect to an existing Screen session if one is available. If not, it starts a new one.

  • -e xy: Changes the default keybindings for Screen commands to custom ones, which is useful for avoiding conflicts with other programs.

  • -f: Enables data flow control; -fn disables it; -fa enables automatic flow control, which is helpful when working with large amounts of data.

  • -h lines: Sets the scrollback buffer size, allowing you to scroll through more command history.

  • -i: Interrupts data output on the screen when flow control is enabled, preventing terminal overload.

  • -l: Logs session information to the system log to keep track of active sessions; -ln disables this.

  • -ls [pattern]: Displays a list of all active Screen sessions currently connected.

  • -L: Enables logging of all terminal output to a log file.

  • -p window: Automatically selects the specified window on startup if it exists.

  • -q: Runs Screen in “quiet” mode, suppressing unnecessary error messages.

  • -V: Displays the version of Screen and then exits.

  • -r [session]: Reconnects to a previously started but detached Screen session.

  • -R: If an existing session is found, it reconnects to it; if not, it starts a new one.

  • -S session_name: Assigns a name to the new session, making it easier to reconnect to it later.

  • -t title: Sets a title for the window, which is displayed in the window list.

  • -U: Enables UTF-8 encoding support for text display.

  • -v: Displays the current version of the Screen program.

  • -x: Attaches to an active session, allowing it to be used simultaneously on multiple screens.

  • -X: Executes the specified command within an active Screen session.

Working with Screen Windows

You can work with multiple Screen sessions simultaneously, with several windows open for each session.

To create a new window with a shell, press:

Ctrl+a c

The window will be automatically assigned a number from 0 to 9.

Below are the common commands for managing windows in Screen:

  • Ctrl+a c — Create a new window (with a shell).

  • Ctrl+a " — Display a list of all windows.

  • Ctrl+a 0 — Switch to window 0 (by number).

  • Ctrl+a A — Rename the current window.

  • Ctrl+a S — Split the current region horizontally into two regions.

  • Ctrl+a | — Split the current region vertically into two regions.

  • Ctrl+a tab — Move the input focus to the next region.

  • Ctrl+a Ctrl+a — Toggle between the current and previous windows.

  • Ctrl+a Q — Close all regions except the current one.

  • Ctrl+a X — Close the current region.

To see all commands, enter:

Ctrl+a ?

When Screen starts, it reads its configuration settings from /etc/screenrc and ~/.screenrc, if they exist.

You can customize Screen's default settings to suit your preferences using the .screenrc file.

This example includes a custom status line and several additional options:

# Disable the startup message
startup_message off

# Automatically detach from the session when the connection is lost
autodetach on

# Set the scrollback buffer to 10,000 lines
defscrollback 10000

# Enable logging for the current session
logfile /path/to/screenlog

Additional recommendations for customizing Screen configuration:

  • Automatic Window Splitting on Startup

Useful if you frequently work with multiple windows and want them to open automatically when Screen starts.

screen -t shell1
split
focus
screen -t shell2
  • Logging All Sessions

Useful for keeping a record of work.

deflog on
logfile $HOME/.screen/screenlog.%t
  • Automatic Reconnection on Disconnection

Useful when working with unstable connections.

autodetach on
reattach on

Examples of Using Screen

Example 1: To monitor file changes in real-time, you can use two Screen windows: one for editing the file and another for displaying its content using the command:

tail -f filename

This allows you to instantly see all changes made without having to re-run the command.

Example 2: When working in a terminal over SSH using a Screen session, you won’t lose data if the connection is interrupted. Even if the connection drops, you can reconnect and resume work exactly where you left off by simply reattaching to the Screen session.

Example 3: For long-running tasks, such as compiling code or performing a backup, you can start the task in one Screen session and monitor its progress. You can safely disconnect anytime, knowing the task will continue running. Later, you can reconnect to the session to check the results.

Conclusion

In this guide, we covered how to use Linux Screen to manage terminal sessions effectively. You learned how to:

  • Create multiple windows within a single session.
  • Switch between windows.
  • Manage sessions, including detaching and resuming them.

We also discussed how to customize the terminal using the .screenrc configuration file to make your work environment more convenient and personalized.

You can now use Screen for a more comfortable and productive terminal experience by mastering these basic features.

For more information about Screen, check out the Screen user's manual.

Linux
20.02.2025
Reading time: 7 min

Similar

Linux

How to Create a Text File in Linux Terminal

In Linux, you can access and edit text files using a text editor that is designed to work with plain text. These files are not specifically coded or formatted. Linux allows one to create a file in numerous ways. The fastest is, probably, Linux Command Line or Terminal. For all users—especially server administrators—who must rapidly generate text files, scripts, or configuration files for their work, this is a very important ability. Let's proceed to the guide on four standard techniques for creating a text file on the terminal. Prerequisites for File Creation in Linux Ensure these prerequisites are met before generating files in a Linux environment using the command-line interface: Access to a Functional Linux System: You must either have a Linux-based operating system installed on your computer or secure access to a Linux server via SSH (Secure Shell) protocol. Operational Terminal Interface: Confirm that your terminal application is accessible and fully operational. The terminal serves as your primary gateway to executing commands. Adequate User Permissions: Verify you can create files within the chosen directory. You may need to use sudo (for directories with access restrictions) to escalate privileges. Fundamental Commands Proficiency: You must get familiar with essential commands, such as touch for file creation, echo for printing text, cat for viewing file contents, and text editors like nano, vim, or vi for editing files directly. Text Editing Utilities: Ensure your system includes text editing tools: nano for command line simplicity, vim for advanced configurations, or graphical options like gedit for user-friendly navigation. Directory Management Expertise: Develop familiarity with directory navigation commands like cd for changing the working directory and ls for listing directory contents. This knowledge streamlines your workflow and avoids potential errors. Using the touch Command Generally, we use the touch command to create empty files and change timestamps. It will create an empty file if it doesn't exist already.  To create a text file in the current directory with the touch command: Open your terminal emulator. Type the command: touch filename.txt Change "filename" to your desired name. The timestamps for access and modification will be updated without changes in file content if the file exists already. Otherwise, an empty file is created with a given name.  Press Enter—if it is successful, there will be no output. Use the ls command to list the directory content and verify file creation. Using the echo Command Redirection The echo command is widely used to display text on the terminal. But its capabilities go beyond that; it may also be used to write content to a file or create an empty file. For this, combine the echo command with double redirect symbols (you can also use a single >) and the desired filename. A text file can be created by redirecting the output of the echo command to a file. See how it works: Open your terminal emulator. Type the command: echo “Your text content here” > filename.txt Replace the text in double quotations (do not delete them) with yours to add it to the file.  After you press Enter, your text will be added to the file filename.txt. It will overwrite an existing file, if there is one. Otherwise, it will just create a new one. Press Enter. To verify that the file has been created and contains the desired content, use cat command to display the content.  Using the cat Command Redirection In Linux, the cat command is mostly used to concatenate and show file contents. It can, however, also be used to generate a text document by redirecting the standard output of cat to a file. Open your terminal emulator. Type the following command: cat > filename.txt Replace filename.txt with the name for your text file. This command instructs cat to receive input rom the terminal and to redirect it into the filename.txt. Press Enter. The terminal will be waiting for input.  Enter the text you want in the file. Press Enter after each line. Press Ctrl + D when you are done. This signals the end of input to the cat and saves the content.  Run the cat command to check that the file has been created and contains the desired content. Start using Hostman efficient S3 storage Using printf for Advanced File Creation The printf utility is a powerful alternative to echo, offering enhanced formatting options for structuring text. It allows users to create files with precisely formatted content. Open the terminal. Use printf to define the text layout, incorporating formatting elements like newlines (\n) or tabs (\t). Redirect the output to a file using the > operator. Example: printf "First Line\nSecond Line\nIndented\tThird Line\n" >  formatted_file.txt Run the cat command to inspect the file's content and ensure the formatting matches expectations. Append Without Overwriting: To add content to an existing file without overwriting its current data, replace > with the append operator >>: printf "Additional content here.\n" >> formatted_file.txt Using a Text Dditor You can also create new files in linux text editors. There is always at least one integrated command-line text editor in your Linux distribution. But you can choose and install a different one according to your preferences, for example, Vim, Nano, or Emacs. Each of them has its own features and advantages. Vim vim, which stands for "Vi IMproved," is a very flexible and adaptable text editor. It is well-known for its modal editing, which allows for distinct modes for various functions like text entry, navigation, and editing. It allows split windows, multiple buffers, syntax highlighting, and a large selection of plugins for extra features. To create a text file using vim, follow the steps below: Open vim, with the desired filename as an argument. Press i to switch to Insert mode. Start typing and editing the filename.txt.  To save and exit, press Esc to ensure that command mode is running. Type: wq (write and quit) and press Enter. Nano nano is ideal for short adjustments and straightforward text files because it is lightweight and requires little setup. It provides support for basic text manipulation functions, search and replace, and syntax highlighting. To create a text file using nano, follow the steps below:  Run nano with the desired filename as an argument. It will open a new buffer for editing the file filename.txt. Start typing and editing the filename.txt.  To save and exit, press Ctrl + O to write the file, confirm the filename, and then press Ctrl + X to exit Nano. Emacs emacs is a powerful and flexible text editor that supports syntax highlighting, multiple buffers, split windows, and integration with external tools and programming languages. To create a text file using emacs, follow the steps below:  Open emacs, with the desired filename as an argument. Start typing and editing the filename.txt.  To save and exit, press Ctrl + X, followed by Ctrl + S to save the file, and then Ctrl + X, followed by Ctrl + C to exit Emacs. Note: If a message states that "VIM command not found", "nano command not found" or "emacs command not found" in Linux, it typically means that the vim, nano or emacs text editor is not installed on the system, or it's not included in the PATH environment variable, which is a list of directories where the operating system looks for executable files. To resolve this, install the text editor first using the command:  apt-get install vim apt-get install nano  apt-get install emacs Gedit An intuitive text editor that supports working with plain text and has syntax highlighting for programming languages. A straightforward graphical interface makes it usable for various tasks, from quick edits to complex document preparation. Open the Gedit Application: Launch Gedit either through the applications menu or by executing the following command in the terminal: gedit example.txt Gedit will create a new file if the specified one does not exist. Input Your Text: Type or paste your desired content into the editor. Save the File: Save your work with Ctrl + S or select File > Save. If creating a new file, specify a filename and a location. Verify: Return to the terminal and confirm the file exists with the ls command or review its content with cat. Linux File Creation Recommendations Ensure you have sufficient permissions to create files in the target directory. If they are insufficient, consider working in a directory where you have full rights (or elevate privileges with sudo). Check if a file with the identical name is already present before using the > operator, as the command will overwrite existing content. To prevent data loss, opt for the append operator >>. Familiarize yourself with the printf, echo, and text editors like vim or nano. These tools will help you reduce errors when working with files in Linux, as well as boost productivity. Use printf for creating files requiring structured content, such as configuration files or scripts with precise formatting needs. Conclusion Now you have acquainted yourself with the fundamental skill of creating a file in Linux using the terminal! Using the Linux command line, several fast and efficient methods exist to create and manage text files. Apply several techniques to meet a different requirement using the touch, echo, cat, printf commands, or text editors like vim, nano, gedit, or emacs. Users can select the method that sufficiently meets their requirements, such as creating empty files, appending text, or significantly modifying material. In summary, any of these methods enable Linux users to easily and quickly handle text files straight from the command line. Hostman offers a reliable managed Linux VPS for your projects.
21 April 2025 · 8 min to read
Linux

Installing and Configuring Grafana

Working with any IT project becomes much easier when the administrator has a wide range of metrics and monitoring data at their fingertips. It's even better when the data is presented in a clear and visual format. This is where tools like Grafana come in — an open-source solution designed to gather information from various sources and consolidate it into visual reports. Grafana supports multiple platforms — Windows, macOS, Linux (including popular distributions like Debian, Ubuntu, CentOS, Fedora, OpenSuse, or RedHat). It can work with databases such as SQLite, MySQL, and PostgreSQL. With so many options, administrators rarely need to adapt the solution to their environment. In this tutorial, we'll go over how to install Grafana, configure it, and work with dashboards. Installing Grafana on CentOS Stream When ordering a Linux VPS, users can install any Linux operating system. Usually, this is one of the common distributions like CentOS or Ubuntu. For this example, we'll assume the OS is already installed and ready for Grafana and other utility programs. Let's import the GPG keys: wget -q -O gpg.key https://rpm.grafana.com/gpg.key sudo rpm --import gpg.key Create a new official repository configuration: sudo nano /etc/yum.repos.d/grafana.repo Add the following content to the file: [grafana] name=grafana baseurl=https://rpm.grafana.com repo_gpgcheck=1 enabled=1 gpgcheck=1 gpgkey=https://rpm.grafana.com/gpg.key sslverify=1 sslcacert=/etc/pki/tls/certs/ca-bundle.crt Install the application: sudo dnf install grafana Enable autostart and launch Grafana: sudo systemctl enable grafana-server sudo systemctl start grafana-server Check the status to ensure Grafana is running: sudo systemctl status grafana-server You should see a message confirming that the service is loaded and active. This step is especially useful if someone previously worked with the server or installed a custom Linux build with bundled utilities. Installing Grafana on Ubuntu The process is similar: we install Grafana from the official repository after preparing the system to trust the source. Run these commands: wget -q -O - https://packages.grafana.com/gpg.key | sudo apt-key add - sudo add-apt-repository "deb https://packages.grafana.com/oss/deb stable main" sudo apt update sudo apt install grafana sudo systemctl enable grafana-server sudo systemctl start grafana-server sudo systemctl status grafana-server Firewall Configuration for Grafana By default, Grafana uses port 3000. Here's how to open it in different firewalls. For iptables: Add the rule: sudo iptables -A INPUT -p tcp --dport 3000 -m state --state NEW -j ACCEPT Save the rules so they persist after reboot: sudo service iptables save Restart iptables to apply changes: sudo systemctl restart iptables For firewalld: firewall-cmd --zone=public --add-port=3000/tcp --permanent systemctl reload firewalld Default Login and Password Grafana uses the default login/password: Username: admin Password: admin If forgotten, reset it with: grafana-cli admin reset-admin-password --homepath "/usr/share/grafana" new_password Data Sources and Plugin Installation Grafana supports numerous data sources: Prometheus, Graphite, OpenTSDB, InfluxDB, and more. It also allows plugin installations to enhance functionality. For example, to install the Zabbix plugin, run: grafana-cli plugins install alexanderzobnin-zabbix-app systemctl restart grafana-server After restart, go to Configuration > Plugins and find Zabbix. After you enable it, you can configure it under Data Sources. This same process applies to other plugins like Grafana PostgreSQL or Grafana Elasticsearch. Working with Grafana Dashboards The core of Grafana is dashboards — sets of panels that visually display data. Users can create their own dashboards by clicking New Dashboard and selecting panel types. Dashboard Types: Graph – multiple metrics in one panel. Stat – single metric graph. Gauge – speedometer-style display. Bar Gauge – vertical bar graph. Table – table with multiple metrics. Text – freeform text. Heatmap – heatmap display. Alert List – list of Grafana alerts. Dashboard List – list of favorite dashboards. You can also display logs from external sources using Grafana Logs, and export/import dashboards for reuse. For advanced control, refer to the official documentation. You can directly edit the grafana.ini file to change: Default ports Log storage paths Proxy settings User access controls Feature toggles Conclusion Grafana is a powerful and flexible monitoring solution. To fully unlock its potential, experiment with dashboards, try manual config via grafana.ini, and explore third-party plugins. As an actively developed project, Grafana remains one of the top data visualization and monitoring tools.
17 April 2025 · 4 min to read
Linux

How to Copy Files over SSH

The SSH (Secure Shell) protocol is a network protocol for remote command-line management of operating systems, widely considered the standard for remote access to *nix machines. It allows secure login to a server, remote command execution, file management (creating, deleting, copying, etc.), and more. Most cloud and hosting providers require SSH to access their services. In this article, we’ll look at how to copy files over SSH on both Windows and Linux systems. How SSH Works SSH can securely transmit any data (audio, video, application protocol data) through an encrypted communication channel. Unlike outdated and insecure protocols like Telnet and rlogin, SSH ensures data confidentiality and authenticity — essential for internet communications. Here’s how a secure connection between a client and server is established: TCP Connection Setup: By default, the server listens on port 22. Both sides share a list of supported algorithms (compression, encryption, key exchange) and agree on which to use. Authentication: To prevent impersonation, both parties verify each other's identities using asymmetric encryption (public/private key pairs). First, the server is authenticated. On the first connection, the client sees a warning with server details. Trusted server keys are stored in /home/<username>/.ssh/known_hosts. Key Generation: Once the server is verified, both sides generate a symmetric key to encrypt all data exchanged. User Authentication: This is done using either a password or a client-sent public key stored in /home/<username>/.ssh/authorized_keys on the server. The most popular implementation on Linux is OpenSSH, which comes pre-installed on most distributions (Ubuntu, Debian, RHEL-based, etc.). Clients like PuTTY or MobaXterm are used on Windows. Since Windows 10 and Server 2019, OpenSSH tools are also available natively. You can learn more about working with SSH in our tutorial. File Copying via SSH Two main utilities for copying files over SSH in Linux are scp and sftp. Both come with OpenSSH. SSH supports two protocol versions: 1 and 2. OpenSSH supports both, but version 1 is rarely used. Autocompletion Setup To enable Tab-based autocompletion when using scp, set up public key authentication: Generate a key pair: ssh-keygen You’ll see output like: Generating public/private rsa key pair. Enter file in which to save the key (/home/user/.ssh/id_rsa): Enter passphrase (empty for no passphrase): By default, your keys (id_rsa for private and id_rsa.pub for public) are saved to ~/.ssh/. Now copy the public key to the remote machine: ssh-copy-id [username]@[ip-address] After entering the user's password, you’ll see a message confirming the key was added. Secure Copy (SCP) For small data transfers (e.g., service configs), scp is best. Copy from local to remote: scp test.txt user@192.168.1.29:/home/user/ Copy multiple files: scp test1.txt test2.txt user@192.168.1.29:/home/user/ Copy from remote to local: scp user@192.168.1.29:/home/user/test.txt ~/ Copy directories: scp -r testdir user@192.168.1.29:/home/user/ Remote-to-remote copy: scp gendo@192.168.1.25:/home/gendo/test.txt user@192.168.1.29:/home/user/ Secure FTP (SFTP) SFTP is another utility included in OpenSSH. As of OpenSSH 9.0, scp now uses SFTP by default instead of the old SCP/RCP protocol. Unlike classic FTP, sftp transmits encrypted data over a secure tunnel. It does not require a separate FTP server. Example usage: sftp misato@192.168.1.29 sftp> ls sftp> lcd testdir/ sftp> get test.txt sftp> bye Graphical file managers like Midnight Commander and Nautilus use sftp. In Nautilus, the remote server appears like a local folder, e.g., user@ip. Copying Files Over SSH on Windows Use the pscp command-line tool from PuTTY to copy files on Windows. Copy to server: pscp C:\server\test.txt misato@192.168.1.29:/home/misato/ Copy from server: pscp misato@192.168.1.29:/home/misato/test.txt C:\file.txt List files on remote server: pscp -ls user@192.168.1.29:/home/misato Use quotes for paths with spaces: pscp "C:\dir\bad file name.txt" misato@192.168.1.29:/home/misato/ To get help, run: pscp Conclusion We’ve covered how to copy files to and from a server using the secure SSH protocol. If you work with cloud servers, understanding SSH is essential — it’s the standard method for remote access to *nix machines and a vital part of everyday DevOps and system administration.
14 April 2025 · 4 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support