Sign In
Sign In

How to Install Nextcloud with Docker

How to Install Nextcloud with Docker
Hostman Team
Technical writer
Docker
27.09.2024
Reading time: 10 min

Nextcloud is an open-source software for creating and using your own cloud storage. It allows users to store data, synchronize it between devices, and share files through a user-friendly interface. This solution is ideal for those prioritizing privacy and security over public cloud services. Nextcloud offers a range of features, including file management, calendars, contacts, and integration with other services and applications.

When deploying Nextcloud, Docker provides a convenient and efficient way to install and manage the application. Docker uses containerization technology, simplifying deployment and configuration and ensuring scalability and portability. Combining Docker with Docker Compose allows you to automate and standardize the deployment process, making it accessible even to users with minimal technical expertise.

In this guide, we'll walk you through installing Nextcloud using Docker Compose, configuring Nginx as a reverse proxy, and obtaining an SSL certificate with Certbot to secure your connection.

Installing Docker and Docker Compose

Docker is a powerful tool for developers that makes deploying and running applications in containers easy. Docker Compose simplifies orchestration of multi-container applications using YAML configuration files, which streamline the setup and management of complex applications.

  1. Download the installation script by running the command:

curl -fsSL https://get.docker.com -o get-docker.sh

This script automates the Docker installation process for various Linux distributions.

  1. Run the installation script:

sudo sh ./get-docker.sh

This command installs both Docker and Docker Compose. You can add the --dry-run option to preview the actions without executing them.

  1. After the script completes, verify that Docker and Docker Compose are installed correctly by using the following commands:

docker -v
docker compose version

These commands should display the installed versions, confirming successful installation.

Preparing to Install Nextcloud

Creating a Working Directory

In Linux, third-party applications are often installed in the /opt directory. Navigate to this directory with the command:

cd /opt

Create a folder named mynextcloud in the /opt directory, which will serve as the working directory for your Nextcloud instance:

mkdir mynextcloud

Configuring the docker-compose.yml File

After creating the directory, navigate into it:

cd mynextcloud

We will define the Docker Compose configuration in the docker-compose.yml file. To edit this file, use a text editor such as nano or vim:

nano docker-compose.yml

In the docker-compose.yml file, you should include the following content:

version: '2'

volumes:
  mynextcloud:
  db:

services:
  db:
    image: mariadb:10.6
    restart: unless-stopped
    command: --transaction-isolation=READ-COMMITTED --log-bin=binlog --binlog-format=ROW
    volumes:
      - db:/var/lib/mysql
    environment:
      - MYSQL_ROOT_PASSWORD=RootPass
      - MYSQL_PASSWORD=NextPass
      - MYSQL_DATABASE=nextclouddb
      - MYSQL_USER=nextclouduser

  app:
    image: nextcloud
    restart: unless-stopped
    ports:
      - 8081:80
    links:
      - db
    volumes:
      - mynextcloud:/var/www/html
    environment:
      - MYSQL_PASSWORD=NextPass
      - MYSQL_DATABASE=nextclouddb
      - MYSQL_USER=nextclouduser
      - MYSQL_HOST=db

Parameters in this file:

  • version: '2': Specifies the version of Docker Compose being used. Version 2 is known for its simplicity and stability.

  • volumes: Defines two named volumes: mynextcloud for app data and db for database storage.

  • services:

    • db:

      • image: Uses the MariaDB 10.6 image.

      • restart: Automatically restarts the service unless manually stopped.

      • volumes: Binds the db volume to /var/lib/mysql in the container for persistent database storage.

      • environment: Sets environment variables like passwords, database name, and user credentials.

    • app:

      • image: Uses the Nextcloud image.

      • ports: Maps port 8081 on the host to port 80 inside the container, allowing access to Nextcloud through port 8081.

      • links: Links the app container to the db container for database interaction.

      • volumes: Binds the mynextcloud volume to /var/www/html for storing Nextcloud files.

      • environment: Configures database-related environment variables, linking the Nextcloud app to the database.

This configuration sets up your application and database environment. Now, we can move on to launching and configuring Nextcloud.

Running and Configuring Nextcloud

Once the docker-compose.yml configuration is ready, you can start the project.

Run the following commands in the mynextcloud directory to download the necessary images and start the containers:

docker compose pull
docker compose up

The docker compose pull command will download the required Nextcloud and MariaDB images. The docker compose up command will launch the containers based on your configuration.

The initial setup may take a while. When it’s complete, you will see messages like:

nextcloud-app-1  | New nextcloud instance
nextcloud-app-1  | Initializing finished

After the initial configuration, you can access Nextcloud through your browser. Enter http://server-ip:8081 into the browser’s address bar.

You will be prompted to create an administrator account by providing your desired username and password.

During the initial configuration, you can also choose additional apps to install.

Stopping and Restarting Containers in Detached Mode

After verifying that Nextcloud is running correctly through the web interface, you can restart the containers in detached mode to keep them running in the background.

If the containers are still running in interactive mode (after executing docker compose up without the -d flag), stop them by pressing Ctrl+C in the terminal.

To restart the containers in detached mode, use the command:

docker compose up -d

The -d flag stands for "detached mode," which allows the containers to run in the background independently of your terminal session.

Now the containers are running in the background. If you have a domain ready, you can proceed with configuring the server as a reverse proxy.

Setting up Nginx as a Reverse Proxy

Installation

Nginx is often chosen as a reverse proxy due to its performance and flexibility. You can install it by running the command:

sudo apt install nginx

Configuring Nginx

Create a configuration file for your domain (e.g., nextcloud-test.com). Use a text editor to create the file in the /etc/nginx/sites-available directory:

sudo nano /etc/nginx/sites-available/nextcloud-test.com

Add the following directives to the file:

server {
    listen 80;
    server_name nextcloud-test.com;

    location / {
        proxy_pass http://localhost:8081;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header X-Forwarded-Proto $scheme;
        add_header Strict-Transport-Security "max-age=15552000; includeSubDomains" always;
    }

    location ^~ /.well-known {
        location = /.well-known/carddav { return 301 /remote.php/dav/; }
        location = /.well-known/caldav  { return 301 /remote.php/dav/; }
        location /.well-known/acme-challenge { try_files $uri $uri/ =404; }
        location /.well-known/pki-validation { try_files $uri $uri/ =404; }
        return 301 /index.php$request_uri;
    }
}

This configuration sets up the web server to proxy requests to Nextcloud running on port 8081, with headers for security and proxying.

Key Configuration Details
  • Basic Configuration:

server {
    listen 80;
    server_name nextcloud-test.com;

    location / {
        proxy_pass http://localhost:8081;
        ...
    }
}

This block configures the server to listen on port 80 (standard HTTP) and handle requests directed to nextcloud-test.com. Requests are proxied to the Docker container running Nextcloud on port 8081.

  • Proxy Settings:

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

These headers ensure that the original request information (like the client’s IP address and request protocol) is passed on to the application, which is important for proper functionality and security.

  • HSTS (HTTP Strict Transport Security):

add_header Strict-Transport-Security "max-age=15552000; includeSubDomains" always;

This header enforces security by instructing browsers only to use HTTPS when accessing your site for the next 180 days.

  • Well-Known URI Settings:

location ^~ /.well-known {
    ...
}

This block handles special requests to .well-known URIs, used for service discovery (e.g., CalDAV, CardDAV) and domain ownership verification (e.g., for SSL certificates).

Enabling the Nginx Configuration

Create a symbolic link to the configuration file from the /etc/nginx/sites-enabled/ directory:

sudo ln -s /etc/nginx/sites-available/nextcloud-test.com /etc/nginx/sites-enabled/

Now restart Nginx to apply the new configuration:

sudo systemctl restart nginx

At this point, your web server is configured as a reverse proxy for the Nextcloud application, and you can access it via your domain (note that you might initially see an "Access through untrusted domain" error, which we’ll fix later).

Configuring SSL Certificates with Certbot

Installing Certbot

Certbot is a tool from the Electronic Frontier Foundation (EFF) used for obtaining and managing SSL certificates from Let's Encrypt. It automates the process, enhancing your website's security by encrypting the data exchanged between the server and its users. To install Certbot and the Nginx plugin, use the following command:

sudo apt install certbot python3-certbot-nginx

Obtaining and Installing the SSL Certificate

To obtain an SSL certificate for your domain and configure the web server to use it, run the command:

sudo certbot --non-interactive -m admin@nextcloud-test.com --agree-tos --no-eff-email --nginx -d nextcloud-test.com

In this command:

  • --non-interactive: Runs Certbot without interactive prompts.

  • -m admin@nextcloud-test.com: Specifies the admin email for notifications.

  • --agree-tos: Automatically agrees to Let's Encrypt’s terms of service.

  • --no-eff-email: Opts out of EFF-related emails.

  • --nginx: Uses the Nginx plugin to automatically configure SSL.

  • -d nextcloud-test.com: Specifies the domain for which the certificate is issued.

Certbot will automatically update the Nginx configuration to use the SSL certificate, including setting up HTTP-to-HTTPS redirection. After Certbot completes the process, restart Nginx to apply the changes:

sudo systemctl restart nginx

Now, your Nextcloud instance is secured with an SSL certificate, and all communication between the server and clients will be encrypted.

Fixing the "Access through Untrusted Domain" Error

When accessing Nextcloud through your domain, you may encounter an "Access through untrusted domain" error. This occurs because the initial configuration was done using the server’s IP address.

Since our application is running inside a container, you can either use docker exec or modify the Docker volume directly. We’ll use the latter method since we created Docker volumes earlier in the docker-compose.yml file.

  1. First, list your Docker volumes:

docker volume ls

Find the volume named mynextcloud_mynextcloud.

  1. To access the volume, run:

docker volume inspect mynextcloud_mynextcloud

Look for the Mountpoint value to find the path to the volume.

  1. Change to that directory:

cd /var/lib/docker/volumes/mynextcloud_mynextcloud/_data
  1. Navigate to the config directory and open the config.php file for editing:

cd config
nano config.php
  1. In the file, update the following lines:

    • Change overwrite.cli.url from http://server_ip:8081 to https://your_domain.

    • In the trusted_domains section, replace server_ip:8081 with your domain.

    • Add the line 'overwriteprotocol' => 'https' after overwrite.cli.url to ensure all resources load via HTTPS.

  2. Save the changes (in Nano, use Ctrl+O, then Ctrl+X to exit).

After saving the changes in config.php, you should be able to access the application through your domain without encountering the "untrusted domain" error.

Conclusion

Following these steps, you’ll have a fully functional, secure Nextcloud instance running in a containerized environment.

Docker
27.09.2024
Reading time: 10 min

Similar

Docker

How to Install Docker on MacOS

Docker is a platform that makes it easier to create, deploy, and operate applications in containers. Containers enable developers to bundle an application's dependencies, including as libraries, frameworks, and runtime environments, and ship it as a single package. This ensures that the program runs reliably and consistently, independent of the environment in which it is deployed. If you have troubles with that, here's our instruction how to deploy server with Docker. Docker allows you to automate the deployment of software inside lightweight, portable containers. These containers may operate on any system with Docker installed, making it simple to deploy apps across several settings, such as a developer's laptop, a testing server, or a production environment on the cloud. Docker also includes tools for managing and orchestrating containers at scale, making it simpler to deploy, scale, and manage complex applications in production environments. Below are the requirements to prepare for the installation of docker on MacOS:  A supported version of MacOS. Docker Desktop is compatible with the latest macOS versions. This includes the current macOS release as well as the two previous releases. As new major versions of macOS become widely available, Docker stops supporting the oldest version and instead supports the most recent version (along with the prior two). RAM: minimum of 4 GB. This is to optimize Docker performance especially when operating multiple containers.  In installing docker, you can either install it interactively or manually or via the command line interface. Here’s the guide on how to do the installation with both methods. Manual Installation Download the installer from the official docker website using the following links: Apple Silicon processor Intel chip processor Install Docker Desktop by double-clicking the Docker.dmg:  And drag and drop it to the Application folder. By default, the Docker Desktop is installed at /Applications/Docker. Wait for the copying to finish. Double-click the Docker from the Applications folder to proceed with the installation. Click Accept to continue in the Docker Subscription Service Agreement page. From the installation window, choose either: Use recommended settings (Requires password) Use advanced settings Click Finish.  Verify if installation is successful. A Docker icon should appear on the menu bar when the Docker Desktop is installed and running. A notification will appear stating that Docker is running. Install using Command Line Interface Once Docker.dmg is downloaded from the official docker website, login as a super user / root in a terminal to install Docker Desktop in the Application folder. Execute the below commands respectively.  hdiutil attach Docker.dmg /Volumes/Docker/Docker.app/Contents/MacOS/install hdiutil detach /Volumes/Docker If running as a normal user, execute the command with sudo: sudo hdiutil attach Docker.dmg sudo /Volumes/Docker/Docker.app/Contents/MacOS/install sudo hdiutil detach /Volumes/Docker Installation might take some time to complete since the system may do various security checks while installing Docker on Mac. Troubleshooting Some of the common issues that the user might encounter during the installation of MacOS are:  Users may not check the MacOs version of their machine. Take note of the system requirements when installing Docker on MacOS to avoid installation failure and unexpected behavior (like docker image becomes corrupted). Errors during the installation process may occur such as failed downloads, incomplete installation, etc. Go back and check the system and hardware compatibility of the machine.  Conflict with existing software. This requires troubleshooting and investigating system logs. Usually, this can be solved by removing the problematic software.  Permission and security issues. When installing Docker on MacOS, ensure that the machine has all the required permission to access system resources, like directory, network, etc.  Conclusion To summarize, installing Docker on MacOS provides various opportunities for both developers and system administrators. Docker technology provides resources with an enhanced development workflow, an efficient procedure for delivering apps, and consistent system environments. Embrace containerization to broaden your development horizons. Check what Hostman VPS Servers can give you.
30 April 2025 · 4 min to read
Docker

Installing and Using Nexus Repository for Artifact Storage

In software development, "artifact" is a component of a developed software product. Artifacts include executable and binary files, software packages, and more. As the product's architecture and functionality increase, the number of artifacts grows exponentially, and you need a reliable storage solution that can manage large volumes of artifacts efficiently.  One such solution is Nexus Repository by Sonatype.  Nexus supports over 15 artifact formats, including APT, Docker, Go, Helm, Maven, npm, PyPi, and more.  There are two versions of Nexus Repository: Free version – Includes essential repository management features. Commercial version – Offers customer support and a broader range of supported artifact types. In this guide, we will install the free version of Nexus Repository. Prerequisites You can install Nexus Repository on a Linux, Windows, or MacOS machine. In this guide, we will use a Hostman cloud server running Ubuntu. The server must meet the following minimum requirements: 4-core CPU. 8-core or higher is recommended. 8 GB RAM  50 GB of free disk space (excluding OS and other installed software). If there is insufficient space, Nexus will not start. The official Sonatype website provides recommended system requirements based on the number of repositories and stored artifacts. Installing Nexus Repository Step 1: Install Java First, update the package list: sudo apt update Then, install Java 8 using OpenJDK: sudo apt -y install openjdk-8-jre-headless After installation, verify Java's version: java -version If you have multiple Java versions installed, switch to Java 8: sudo update-alternatives --config java Select the correct version using the TAB key and confirm with Enter. Step 2: Download and Extract Nexus We will install Nexus in the /opt directory. Download the latest Nexus archive: sudo wget https://download.sonatype.com/nexus/3/latest-unix.tar.gz Extract the archive to /opt: sudo tar -zxvf latest-unix.tar.gz -C /opt Rename the extracted directory (for easier management): sudo mv /opt/nexus-3.61.0-02 /opt/nexus Make sure to specify the correct version number in your case.  Step 3: Create a Dedicated User for Nexus Create a new user named nexus: sudo adduser nexus Disable direct login for this user: sudo usermod nexus -s Set the correct ownership for Nexus directories: sudo chown -R nexus:nexus /opt/nexus /opt/sonatype-work Step 4: Configure Nexus Edit the Nexus configuration file: sudo nano /opt/nexus/bin/nexus.rc Uncomment (remove #) and set the user as nexus: run_as_user="nexus" Save and exit the file. Step 5: Create a Systemd Service for Nexus Create a new service file: sudo nano /etc/systemd/system/nexus.service Add the following content: [Unit] Description=Nexus Repository Manager After=network.target [Service] Type=forking LimitNOFILE=65536 ExecStart=/opt/nexus/bin/nexus start ExecStop=/opt/nexus/bin/nexus stop User=nexus Restart=on-abort [Install] WantedBy=multi-user.target Save and exit the file. Step 6: Start and Enable Nexus Start Nexus: sudo systemctl start nexus Check Nexus status: systemctl status nexus If the status is active, Nexus is running successfully. Enable Nexus to start on boot: sudo systemctl enable nexus Step 7: Verify Nexus Startup Nexus takes 2-3 minutes to fully start. To check the logs: tail -f /opt/sonatype-work/nexus3/log/nexus.log Once you see: Started Sonatype Nexus OSS Nexus is ready. By default, the Nexus web interface is accessible on port 8081: http://your-server-ip:8081 Initial Setup of Nexus Repository Step 1: Log into Nexus Open the Nexus web interface. Click the Sign in button (top-right corner). Retrieve the default admin password by running: cat /opt/sonatype-work/nexus3/admin.password Use this password to log in as admin. Step 2: Initial Configuration Set a new password for the admin user. Enable or disable anonymous access: Enabled: Any user with the repository URL can browse/download artifacts without authentication. Disabled: Authentication (login/password) is required. Nexus is now ready to use. Creating a Docker Repository in Nexus Step 1: Create a Docker Repository Log in as admin. Go to Server Administration and Configuration (gear icon). In the left menu, select Repositories. Click Create repository. Choose docker (hosted). Step 2: Configure the Repository Nexus supports three types of repositories: Hosted: Stores artifacts directly in Nexus. Proxy: Fetches artifacts from remote repositories (e.g., APT). Group: Combines multiple repositories into one unified endpoint. For a Docker repository: Set a repository name, e.g., docker-images. Enable HTTP access (check the box). Assign a port number (e.g., 8083). Save the settings. Step 3: Configure Docker to Work with Nexus By default, Docker does not allow HTTP connections. To enable HTTP access: Edit or create the Docker daemon configuration file: sudo nano /etc/docker/daemon.json Add the following configuration: { "insecure-registries": ["166.1.227.189:8083"] } (Replace 166.1.227.189:8083 with your Nexus server IP and port.) Save and exit the file. Restart the Docker service: sudo systemctl restart docker Warning: Restarting Docker affects running containers. Containers without the --restart=always flag may not restart automatically. Step 4: Push a Docker Image to Nexus Log in to Nexus via Docker: docker login 166.1.227.189:8083 You can use the admin username and the password you set earlier. Tag an image (e.g., alpine): docker tag alpine:latest 166.1.227.189:8083/alpine-test Verify the new tag: docker images Push the image to Nexus: docker push 166.1.227.189:8083/alpine-test Confirm the upload: Open the Nexus web interface. Go to the docker-images repository. The alpine-test image should be listed. Your Nexus repository is now set up for Docker image storage! HTTPS Configuration The correct approach when working with Docker repositories is to use the HTTPS protocol. To configure HTTPS in Nexus, follow these steps: Navigate to the /opt/nexus/etc/ssl directory: cd /opt/nexus/etc/ssl Use keytool to generate a self-signed certificate: sudo keytool -genkeypair -keystore keystore.jks -storepass test12345 -keypass test12345 -alias jetty -keyalg RSA -keysize 2048 -validity 1000 -dname "CN=*.${NEXUS_DOMAIN}, OU=test, O=test1, L=Unspecified, ST=Unspecified, C=RU" -ext "SAN=DNS:nexus-repo.com,IP:166.1.227.189" -ext "BC=ca:true" Replace the following values with your own: -keystore keystore.jks — Name of the file where the key will be stored, using the .jks format. -storepass test12345 — Password for accessing the key store. -keypass test12345 — Password for accessing the private key. -ext "SAN=DNS:nexus-repo.com,IP:166.1.227.189" — Specifies your Nexus server's domain name and IP address. If a local domain is used, it must be added to the /etc/hosts file (for Linux) or C:\Windows\System32\drivers\etc\hosts in Windows. Next, extract the server certificate from the generated keystore.jks file using the following command: sudo keytool -export -alias jetty -keystore keystore.jks -rfc -file nexus.cert The output will be a certificate file named nexus.cert. Now, edit the Nexus configuration file nexus-default.properties located in /opt/nexus/etc: sudo nano /opt/nexus/etc/nexus-default.properties Find the section with the comment # Jetty section, and add the following parameter: application-port-ssl=8443 This specifies the port where HTTPS will be available. In the same section, add this line: nexus-args=${jetty.etc}/jetty.xml,${jetty.etc}/jetty-http.xml,${jetty.etc}/jetty-https.xml,${jetty.etc}/jetty-requestlog.xml Next, edit the jetty-https.xml file located in /opt/nexus/etc/jetty: sudo nano /opt/nexus/etc/jetty/jetty-https.xml Locate the block named sslContextFactory. In the fields KeyStorePassword, KeyManagerPassword, TrustStorePassword, enter the password used during certificate generation. In this example, the password is test12345. In the parameters KeyStorePath and TrustStorePath, specify the name of the generated certificate. After making these changes, restart the Nexus service: sudo systemctl restart nexus Installing the Certificate on Linux In Linux, we must install the certificate at the OS level. Otherwise, when trying to authenticate to the repository using the docker login command, the following error may occur: x509: certificate signed by unknown authority To install the certificate on Ubuntu/Debian, follow these steps: Install the ca-certificates package: sudo apt -y install ca-certificates The certificate must be in .crt format, as other formats are not supported. Since the certificate was generated as .cert, rename it to .crt: sudo mv nexus.cert nexus.crt Copy the certificate to /usr/local/share/ca-certificates: sudo cp nexus.crt /usr/local/share/ca-certificates Install the certificate using the following command: sudo update-ca-certificates Configuring HTTPS in the Nexus Repository To configure HTTPS in the repository: Open the Nexus web interface and log in as an administrator. Navigate to the Server Administration and Configuration section (gear icon). In the left menu, select Repositories, find the required repository, check the box next to HTTPS, and specify a port that is not already in use on the server, such as 8344. 4 Save the changes. On the server, run the docker login command, specifying the repository address and HTTPS port: docker login nexus-repo.com:8344 You can log in using the admin account. Pushing an Image to the Repository To test pushing an image, let's use nginx: Assign a tag to the image. The format for Docker image tags is as follows: image:tag registry_address:repository_port/image_name Example: docker tag nginx:latest nexus-repo.com:8344/nginx-test Verify that the new image exists: docker images Push the image to the repository: docker push nexus-repo.com:8344/nginx-test Open the Nexus web interface, navigate to the repository, and confirm that the image was successfully uploaded. Conclusion Nexus Repository is an excellent solution for storing and managing artifacts. Supporting a wide range of artifact formats, it is suitable for both small development teams and larger enterprises.
11 March 2025 · 8 min to read
Docker

How To Install and Use Docker Compose on Ubuntu

Docker Compose has fundamentally changed how developers approach containerized applications, particularly when coordinating services that depend on one another. This tool replaces manual container management with a structured YAML-driven workflow, enabling teams to define entire application architectures in a single configuration file.  For Ubuntu environments, this translates to reproducible deployments, simplified scaling, and reduced operational overhead. This guide provides a fresh perspective on Docker Compose installation and usage, offering deeper insights into its practical implementation. Prerequisites Before you begin this tutorial, you'll need a few things in place: Deploy an Ubuntu cloud server instance on Hostman. Ensure you have a user account with sudo privileges or root access. This allows you to install packages and manage Docker. Install Docker and have it running on your server, as Docker Compose works on top of Docker Engine. Why Docker Compose Matters Modern applications often involve interconnected components like APIs, databases, and caching layers. Managing these elements individually with Docker commands becomes cumbersome as complexity grows. Docker Compose addresses this by allowing developers to declare all services, networks, and storage requirements in a docker-compose.yml file. This approach ensures consistency across environments—whether you’re working on a local Ubuntu machine or a cloud server. For example, consider a web application comprising a Node.js backend, PostgreSQL database, and Redis cache. Without Docker Compose, each component requires separate docker run commands with precise networking flags. With Compose, these relationships are organized once, enabling one-command setups and teardowns. Docker Compose Installation Follow these steps to install Docker Compose on your Ubuntu machine: Step 1: Verify that the Docker Engine is Installed and Running Docker Compose functions as an extension of Docker, so verify its status with: sudo systemctl status docker Example output: ● docker.service - Docker Application Container Engine Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled) Active: active (running) since Thu 2025-02-20 08:55:04 GMT; 5min ago TriggeredBy: ● docker.socket Docs: https://docs.docker.com Main PID: 2246435 (dockerd) Tasks: 9 Memory: 53.7M CPU: 304ms CGroup: /system.slice/docker.service └─2246435 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock If inactive, start it using sudo systemctl start docker. Step 2: Update System Packages Refresh your package lists to ensure access to the latest software versions: sudo apt-get update You will see: Hit:1 https://download.docker.com/linux/ubuntu jammy InRelease Hit:2 http://archive.ubuntu.com/ubuntu jammy InRelease Hit:4 http://security.ubuntu.com/ubuntu jammy-security InRelease Hit:5 http://repo.hostman.com/ubuntu focal InRelease Hit:6 http://archive.ubuntu.com/ubuntu jammy-updates InRelease Hit:7 http://archive.ubuntu.com/ubuntu jammy-backports InRelease Hit:3 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.31/deb InRelease Hit:8 https://packages.redis.io/deb jammy InRelease Reading package lists... Done Step 3: Install Foundational Utilities Secure communication with Docker’s repositories requires these packages: sudo apt-get install ca-certificates curl  Step 4: Configure Docker’s GPG Key Authenticate Docker packages by adding their cryptographic key: sudo install -m 0755 -d /etc/apt/keyringssudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.ascsudo chmod a+r /etc/apt/keyrings/docker.asc This step ensures packages haven’t been altered during transit. Step 5: Integrate Docker’s Repository Add the repository tailored to your Ubuntu version: echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null The command auto-detects your OS version using VERSION_CODENAME. Step 6: Install the Docker Compose Plugin Update repositories and install the Compose extension: sudo apt updatesudo apt-get install docker-compose-plugin Step 7: Validate the Installation Confirm successful setup with: docker compose version The output displays the Docker Compose version: Docker Compose version v2.33.0 Building a Practical Docker Compose Project Let’s deploy a web server using Nginx to demonstrate Docker Compose’s capabilities. Step 1. Initialize the Project Directory Create a dedicated workspace: mkdir ~/compose-demo && cd ~/compose-demo Step 2. Define Services in docker-compose.yml Create the configuration file: nano docker-compose.yml Insert the following content: services: web: image: nginx:alpine ports: - "8080:80" volumes: - ./app:/usr/share/nginx/html In the above YAML file: services: Root element declaring containers. web: Custom service name. image: Uses the Alpine-based Nginx image for reduced footprint. ports: Maps host port 8080 to container port 80. volumes: Syncs the local app directory with the container’s web root. Step 3. Create Web Content Build the HTML structure: mkdir app nano app/index.html Add this HTML snippet: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Docker Compose Test</title> </head> <body> <h1>Hello from Docker Compose!</h1> </body> </html> Orchestrating Containers: From Launch to Shutdown Let’s explore how you can use Docker Compose for container orchestration: Start Services in Detached Mode Launch containers in the background: docker compose up -d Example output: [+] Running 2/2 ✔ Network compose-demo_default Created ✔ Container compose-demo-web-1 Started Docker Compose automatically pulls the Nginx image if missing and configures networking. Verify Container Status Check operational containers: docker compose ps -a Access the Web Application Visit http://localhost:8080 locally or http://<SERVER_IP>:8080 on remote servers. The test page should display your HTML content. Diagnose Issues via Logs If the page doesn’t load or if you encounter any issues, you can inspect container logs: docker compose logs web Example output: web-1 | /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration web-1 | /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/ web-1 | /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh web-1 | 10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf web-1 | 10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf web-1 | /docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh … Graceful Shutdown and Cleanup Stop containers temporarily: docker compose stop Example output: [+] Stopping 1/1 ✔ Container compose-demo-web-1  Stopped Remove all project resources: docker compose down Example output: [+] Running 2/2 ✔ Container compose-demo-web-1  Removed ✔ Network compose-demo_default  Removed Command Reference: Beyond Basic Operations While the workflow above covers fundamentals, these commands enhance container management: docker compose up --build: Rebuild images before starting containers. docker compose pause: Freeze containers without terminating them. docker compose top: Display running processes in containers. docker compose config: Validate and view the compiled configuration. docker compose exec: Execute commands in running containers (e.g., docker compose exec web nginx -t tests Nginx’s configuration). Conclusion Docker Compose transforms multi-container orchestration from a manual chore into a streamlined, repeatable process. By adhering to the steps outlined—installing Docker Compose, defining services in YAML, and leveraging essential commands—you can manage complex applications with confidence.
26 February 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support