Sign In
Sign In

How to Install and Use Docker on Debian

How to Install and Use Docker on Debian
Hostman Team
Technical writer
Docker Debian
27.03.2024
Reading time: 9 min

Docker's impact on the packaging, deployment, and execution of apps makes it the preferred method of containerization. Installing Docker on Debian provides multiple benefits as it streamlines the workflow, enhances security measures, and optimizes resource management. Docker helps developers build, test and deploy their apps in a single environment, free from system configurations. It offers strong security as containers are isolated from the host system, and any threats within the application do not impact the host machine.

In this article we'll delve into the basics of Docker and how to install it on Debian. Our comprehensive guide will walk you through the process of utilizing Docker on Debian. You'll discover useful tips for streamlining the containerization of your applications. Whether you're a novice or seeking to improve your expertise, this tutorial offers a thorough overview of Docker and its significance in application containerization on Debian.

Preparing Debian for Docker Installer

Before installing and utilizing Docker on Debian, you should ensure that your system meets the requirements. This includes checking the compatibility of your hardware and software with Docker, such as the operating system and kernel version, processor architecture, and free disk space. It is also essential to confirm that your system possesses adequate RAM and CPU resources to effectively run Docker and its containers.

To ensure that your system is compatible, use the followin command in the terminal: 

uname -a

This will provide details about your operating system and kernel version, and processor architecture. Docker specifically requires a 64-bit version of Debian with a minimum kernel version of 3.10.

For optimal performance, it is essential to have up-to-date software on your system. This includes upgrading any components used by it. Using outdated packages leads to compatibility issues and hinders the smooth functioning. In order to install Docker on Debian correctly, ensure to run the update and upgrade commands specific to your operating system.

How to Install Docker on Debian

Once you have checked the compatibility of your system and set up the dependencies, proceed with the Docker installation on Debian.

  1. Add the Docker repository to your system's sources list to access the latest updates and versions of Docker using the following command:

echo 'deb [arch=amd64] https://download.docker.com/linux/debian buster stable' | sudo tee /etc/apt/sources.list.d/docker.list

  1. However, to install Docker on Debian correctly, it is necessary to add the relevant keys to your system to prevent any potential repository errors. They serve as authentication for the packages that will be downloaded and installed.

To add the keys, use the following command:

curl -fsSL https://download.docker.com/linux/debian/gpg | sudo apt-key add -

By adding the required keys to your system, you will be able to smoothly install Docker without any problems.

  1. Update your system's package list by running the following command:

sudo apt-get update

  1. Install Docker on Debian by executing the following command:

sudo apt-get install docker-ce

  1. Verify that Docker is installed correctly by running the following command:

sudo docker run hello-world

If installed successfully, a message will confirm that Docker is running.

Configuring Docker on Debian

Start configuring Docker on Debian by adding users. While Docker typically operates under the root user, it is better to establish another user for Docker for security reasons. Use this command to indicate a username and password:

adduser <username>

Once users are created, it is crucial to add them to the Docker group to provide access and permissions, using the command:

sudo usermod -aG docker <username>

To enable the changes, it is important to log out of your current session after adding your user to the Docker group. Once you have logged back in, you can test if you can run Docker commands without root privileges by using the command:

docker ps

If the command runs successfully, it confirms that you have successfully created and added your user to the Docker group.

To create a Docker group, use the command below with specified group name:

groupadd <group name>

Once the group has been created, the user can be added to the group using the command:

usermod <username>

This ensures that the user has the required authorizations to run and manage Docker containers.

The Docker group is almost always created automatically, so it is wise to check if the Docker group exists on Debian.

  1. Open the terminal on your Debian system by pressing the 'Ctrl + Alt + T' keys on your keyboard or by searching for 'Terminal' in the applications menu.

  2. In the terminal run the command cat /etc/group to view the list of all the groups on your system.

The resulting output will display a comprehensive list of all groups, including the potential presence of the Docker group. To confirm the existence of this group, simply scroll through the list. If the group is indeed present, you may proceed with utilizing Docker commands.

Use the 'systemctl is-enabled docker' command to check the Docker service to start on boot. Docker automatically starts by default whenever the system boots.

After configuring Docker to start on boot, verify its correct functioning. Use the following command command to check the installed version of Docker.

docker version

Next, check Docker's activity, running status, and any potential errors:

sudo systemctl status docker

Using Docker on Debian

Docker on Debian allows for easily pulling images from Docker Hub, a central repository for developers to share and distribute their images. To pull an image from Docker Hub, use the 'docker pull' command, followed by the image name and the desired tag.

After the image is pulled, use it to launch a container, a running instance of an image. To run a container, use the 'docker run' command, followed by the image name. To stop a container, use the 'docker stop' command, followed by the container ID or name. To remove containers, use the 'docker rm' command, followed by the container ID or name.

Creating and building custom Docker images

Docker on Debian allows for the creation of personalized images tailored to the specific requirements of an application. Dockerfile must be created with instructions for Docker to use while constructing the image. The image foundation is typically Debian, which is customized with necessary configurations and dependencies. This involves package installation, defining environment variables, and transferring files into the image.

After finishing your Dockerfile, use the 'docker build' command to generate the image. A new image will be created based on Dockerfile instructions. Each instruction in the Dockerfile stands for a new layer in the image to quickly restore it in case of any changes.

Ready image can be tagged with a version number or any other identifier if there are multiple versions of an application being used on different environments. Tagged image can be pushed to a Docker Hub to make it available for others.

Networking with Docker on Debian

After you install Docker, using it for networking on Debian facilitates smooth communication between containers and the host machine. Containers are able to seamlessly communicate with each other, using their designated names. Also containers may be connected to multiple networks for even more complex communication configurations.

Docker networking can expose container ports to the host machine for external access to them, making it possible for applications running within to be accessed from the outside. Use the -p flag when running a container, as it maps a port on the host machine to a port on the container.

Effective management of Docker networks involves monitoring network traffic, identifying and resolving network issues, and implementing necessary security protocols. Docker Compose and Docker Swarm tools simplify the process of managing and scaling applications across multiple containers and networks.

Data Management with Docker Volumes

Docker volumes are responsible for managing data and its storage in a separate location from the container. This allows the container to access and utilize the data. Volumes act as external directories, separate from the container's file system, that can be accessed and utilized by the container. The data stored in a volume will remain even if the container is stopped or removed, making it particularly valuable for databases that require persistent storage even when the container is not running.

Docker volumes can be generated by the Docker command line interface or with Dockerfile. Each volume is assigned a name and is stored in a designated location on the host system. This approach to managing volumes makes them easier to identify and access. Volumes can be shared among multiple containers to access data by different containers.

Mounting volumes to containers involves linking volumes to containers, enabling them to access and utilize the data stored inside. This can be done dynamically through the Docker CLI during runtime or by specifying it in Dockerfile. This allows for data to be exchanged between the container and the host machine, as well as among multiple containers.

Mastering Docker on Debian

To become a proficient user of Docker on Debian, it is essential to explore its advanced options, such as orchestration for effectively managing and coordinating multiple containers. The use of Docker Swarm, the native orchestration tool, is fully compatible with Debian and enables the creation of highly available and scalable applications. Docker Swarm on Debian allows for the deployment and management of containers across multiple hosts, making it a valuable asset in production environments.

Docker is able to create lightweight and disposable environments, making it easier to set up new machines for development. It is also useful for establishing a consistent and reproducible environment for continuous integration and deployment. In addition, the extensive selection of packages offered by Debian allows users to effortlessly construct customized images tailored to their specific requirements.

Conclusion

Docker is an impressive utility that enables the creation, deployment, and management of applications on Debian. Its versatility, scalability, and effectiveness make it an invaluable resource for developers, system administrators, and businesses alike. With its ever-evolving capabilities and endless potential, we have provided a guide on how to install Docker on Debian. By incorporating Docker into your workflow, you can streamline and optimize your development and deployment process.

 

The potential of Docker on Debian is constantly expanding as it continues to evolve. One particularly valuable advantage for developers is its ability to create a uniform testing and deployment environment. Through Docker, applications and their necessary components can be bundled into a single image, simplifying the process of reproducing and testing on various systems. This promotes better collaboration among team members, as everyone is operating within the same environment.

 

By the way, Hostman offers cloud servers starting from just $4 per month, in case you were wondering.




Docker Debian
27.03.2024
Reading time: 9 min

Similar

Docker

Docker Exec: Access, Commands, and Use Cases

docker exec is a utility that allows you to connect to an already running Docker container and execute commands without restarting or stopping it. This is very convenient for technical analysis, configuration, and debugging applications. For example, you can check logs, modify configurations, or restart services. And on a cloud server in Hostman, this command helps manage running applications in real time, without rebuilding containers or interfering with the image. How to Use docker exec: Parameters and Examples Before using it, make sure Docker is installed and the container is running. If you are just starting out, check out the installation guide for Docker on Ubuntu 22.04. The basic syntax of docker exec is: docker exec [options] <container> <command> Where: <container> is the name or ID of the target container; <command> is the instruction to be executed inside it. Main Parameters: -i — enables input mode; -t — attaches a pseudo-terminal, useful for running bash; -d — runs the task in the background; -u — allows running the command as a specified user; -e — sets environment variables; -w — sets the working directory in which the command will be executed. Example of launching bash inside a container: docker exec -it my_container /bin/bash This way, you can access the container’s environment and run commands directly without stopping it. Usage Examples List files inside the container: ls /app Run commands with root access: docker exec -u root my_container whoami Pass environment variables: docker exec -e DEBUG=true my_container env Set working directory: docker exec -w /var/www my_container ls Run background tasks: docker exec -d my_container touch /tmp/testfile Check Nginx configuration inside a container before restarting it: docker exec -it nginx_container nginx -t Advanced Use Cases Let’s consider some typical but slightly more complex scenarios that may be useful in daily work: running as another user, passing multiple environment variables, specifying a working directory, etc. Run as web user: docker exec -u www-data my_container ls -la /var/www Set multiple environment variables at once: docker exec -e DEBUG=true -e STAGE=dev my_container env Set working directory with admin rights: docker exec -u root -w /opt/app my_container ls Example with Laravel in Hostman If you deploy a Laravel application in a container on a Hostman server, docker exec will be very handy. Suppose you have a container with Laravel and a database in a separate service. To connect to the server: ssh root@your-server-ip After connecting, you can run Artisan commands—Laravel’s built-in CLI—inside the container. Clear application cache: docker exec -it laravel_app php artisan cache:clear Run migrations: docker exec -it laravel_app php artisan migrate Check queue status: docker exec -it laravel_app php artisan queue:listen Set permissions: docker exec -u www-data -it laravel_app php artisan config:cache Make a backup of a database deployed in a separate container: docker exec -it mariadb_container mysqldump -u root -p laravel_db > backup.sql Before running the last command, make sure that a volume for /backup is mounted, or use SCP to transfer the file to your local machine. This approach does not require changing the image or direct container access, which makes administration safe and flexible. Extended Capabilities of docker exec In this section, we will look at less common but more flexible uses of the docker exec command: for example, running psql in a PostgreSQL container, executing Node.js scripts, or connecting to stopped containers. These cases show how flexible the command can be if something non-standard is required. The command is not limited to basic tasks: in addition to launching shell or bash, you can work with environments, interact with databases, run Node.js scripts, and connect to any running container. Connect to PostgreSQL CLI: docker exec -it postgres_container psql -U postgres -d my_db Run a Node.js script (if you have script.js): docker exec -it node_app node script.js Run a stopped container: docker start my_container   docker exec -it my_container bash Manage users explicitly with -u: docker exec -u www-data my_container ls -la /var/www Quickly remove temporary files: docker exec -it my_container rm -rf /tmp/cache/* This approach is convenient in cron jobs or when manually cleaning temporary directories. When Not to Use the Command Despite its convenience, docker exec is a manual tool for interacting with containers. In production environments, its use can be risky. Why not use docker exec in production: Changes are not saved in Dockerfile. This can break reproducibility and infrastructure integrity. No command logging, so it’s difficult to track actions. Possible desynchronization with CI/CD pipeline. Instead, it is recommended to use: Dockerfile and docker-compose.yml for reproducible builds; CI/CD for automating tasks via GitHub Actions or GitLab CI; Monitoring for log processes with Prometheus, Grafana, and Loki. Troubleshooting Common Errors No such container Cause: container not found or stopped Solution: docker ps The command shows a list of running containers. If your container is not listed, it’s not running or hasn’t been created. exec failed: container not running Cause: attempt to run a command in a stopped container Solution: docker start <container_name> After starting the container, you can use docker exec again. permission denied Cause: insufficient user permissions Solution: docker exec -u root <container> <command> The -u root flag runs the command as root, providing extended access inside the container. This is especially useful when working with system files or configurations. Difference Between docker exec and docker attach In addition to docker exec, there is another way to interact with a container—the docker attach command. It connects you directly to the main process running inside the container, as if you launched it in the terminal. This is convenient if you need to monitor logs or enter data directly, but there are risks: any accidental key press (for example, Ctrl+C) can stop the container. That’s why it’s important to understand the differences. Also, docker attach requires TTY (a terminal emulator) for correct work with interactive apps like bash or sh. Parameter docker exec docker attach Requires TTY Optional Yes Multiple connections Yes No Interferes with main process No Yes Usable for debugging Yes Partially (may harm app) Use docker exec for auxiliary tasks—it provides flexibility and reduces risks. Conclusion The docker exec command is an effective tool for managing containers without interfering with their lifecycle. It allows you to run commands as different users, pass variables, check logs, and perform administrative tasks. When working in cloud services such as Hostman, this is especially useful: you can perform targeted actions without rebuilding the image and without risking the main process. It is important to remember: docker exec is a manual tool and does not replace automated DevOps approaches. For system-level changes, it is better to use Dockerfile and CI/CD, keeping your infrastructure reproducible and secure.
05 September 2025 · 6 min to read
Docker

How to Install Docker on Ubuntu 22.04

Docker is a free, open-source tool for application containerization. Containers are isolated environments similar to virtual machines (VMs), but they are more lightweight and portable across platforms, requiring fewer system resources. Docker uses OS-level virtualization, leveraging features built into the Linux kernel. Apps order after installing Docker on Ubuntu Although it applies to other Ubuntu versions as well, this tutorial explains how to install Docker on Ubuntu 22.04. We'll also download Docker Compose, which is a necessary tool for effectively managing several containers. For this guide, we will use a Hostman cloud server. System Requirements According to Docker's documentation, the following 64-bit Ubuntu versions are supported: Ubuntu Oracular 24.10 Ubuntu Noble 24.04 (LTS) Ubuntu Jammy 22.04 (LTS) Ubuntu Focal 20.04 (LTS) Docker works on most popular architectures. The resource requirements for your device will depend on your intended use and how comfortably you want to work with Docker. The scale of applications you plan to deploy in containers will largely dictate the system needs. Some sources recommend a minimum of 2 GB of RAM. Additionally, a stable internet connection is required. Installing Docker on Ubuntu 22.04 Installing Docker on Ubuntu 22.04 involves executing a series of terminal commands. Below is a step-by-step guide with explanations. The steps are also applicable to server versions of Ubuntu. 1. Update Package Indexes The default repository may not always contain the latest software releases. Therefore, we will download Docker from its official repository to ensure the latest version. First, update the package indexes: sudo apt update 2. Install Additional Packages To install Docker, you’ll need to download four additional packages: curl: Required for interacting with web resources. software-properties-common: Enables software management via scripts. ca-certificates: Contains information about certification authorities. apt-transport-https: Necessary for data transfer over the HTTPS protocol. Download these packages with the following command: sudo apt install curl software-properties-common ca-certificates apt-transport-https -y The -y flag automatically answers "Yes" to all terminal prompts. 3. Import the GPG Key Software signatures must be verified using the GPG key. Docker's repository must be added to the local list. Use the command to import the GPG key: wget -O- https://download.docker.com/linux/ubuntu/gpg | gpg --dearmor | sudo tee /etc/apt/keyrings/docker.gpg > /dev/null During the import process, the terminal may display a warning before confirming the successful execution of the command. 4. Add Docker Repository Add the repository for your version of Ubuntu, named "Jammy." For other versions, use their respective code names listed in the "System Requirements" section. Run the following command: echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu jammy stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null During execution, the terminal will prompt you to confirm the operation. Press Enter. 5. Update Package Indexes Again After making these changes, update the package indexes once more using the familiar command: sudo apt update 6. Verify the Repository Ensure that the installation will proceed from the correct repository by running the following command: apt-cache policy docker-ce Output example: Depending on the most recent Docker releases, the result could change. Verifying that the installation will be carried out from Docker's official repository is crucial. 7. Installing Docker After configuring the repositories, proceed with the Docker installation: sudo apt install docker-ce -y The installation process will begin immediately. To confirm a successful installation, check Docker's status in the system: sudo systemctl status docker Output example: The output should indicate that the Docker service is active and running. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. Installing Docker Compose Docker Compose is a Docker tool designed for managing multiple containers. It is commonly used in projects where many containers must work together as a unified system. Managing this process manually can be challenging. Instead, you describe the entire configuration in a single YAML file containing the settings and configurations for all containers and their applications. There are several ways to install Docker Compose. If you need the latest version, make sure to use manual installation and installation via the Git version control system. Installation via apt-get If having the latest version is not critical for you, Docker Compose can be installed directly from the Ubuntu repository. Run the following command: sudo apt-get install docker-compose Installing via Git First, install Git: sudo apt-get install git Verify the installation by checking the Git version: git --version The output should show the Git version. Next, clone the Docker Compose repository. Navigate to the Docker Compose GitHub page and copy the repository URL. Run the following command to clone the repository: git clone https://github.com/docker/compose.git The cloning process will begin, and the repository will be downloaded from GitHub. Manual Installation Go to the Docker Compose GitHub repository and locate the latest release version under the Latest tag. At the time of writing, the Latest version of Docker Compose is v2.31.0. Let's download it: sudo curl -L "https://github.com/docker/compose/releases/download/v2.31.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose In this command, the parameters $(uname -s) and $(uname -m) automatically account for the system characteristics and architecture. After the download finishes, change the file's permissions: sudo chmod +x /usr/local/bin/docker-compose Right order of your infrastructure after installation of Docker on Ubuntu Conclusion In this guide, we covered the installation of Docker on Ubuntu 22.04, along with several ways to install Docker Compose. You can order a cloud server at Hostman for your experiments and practice.
22 August 2025 · 5 min to read
Docker

Running Selenium with Chrome in Docker

Sometimes, it’s useful to work with Selenium in Python within a Docker container. This raises questions about the benefits of using such tools, version compatibility between ChromeDriver and Chromium, and the nuances of their implementation. In this article, we’ll cover key considerations and provide solutions to common issues. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. Why Run Selenium in Docker? Running Selenium in a container offers several advantages: Portability: Easily transfer the environment between different machines, avoiding version conflicts and OS-specific dependencies. Isolation: The Selenium container can be quickly replaced or updated without affecting other components on the server. CI/CD Compatibility: Dockerized Selenium fits well into CI/CD pipelines — you can spin up a clean test environment from scratch each time your system needs testing. Preparing an Ubuntu Server for Selenium with Docker First, make sure Docker and Docker Compose are installed on the server: docker --version && docker compose version In some Docker Compose versions, the command is docker-compose instead of docker compose. If the tools are installed, you’ll see output confirming their versions. If not, follow this guide. Selenium in Docker Example When deploying Selenium in Docker containers, consider the host architecture, functional requirements, and performance. Official selenium/standalone-* images are designed for AMD64 (x86_64) CPUs, while seleniarm/standalone-* images are adapted for ARM architectures (e.g., Apple silicon or ARM64 server CPUs). First, create a docker-compose.yml file in your project root. It will contain two services: version: "3" services: app: build: . restart: always volumes: - .:/app depends_on: - selenium platform: linux/amd64 selenium: image: selenium/standalone-chromium:latest # For AMD64 # image: seleniarm/standalone-chromium:latest # For ARM64 container_name: selenium-container restart: unless-stopped shm_size: 2g ports: - "4444:4444" # Selenium WebDriver API - "7900:7900" # VNC Viewer environment: - SE_NODE_MAX_SESSIONS=1 - SE_NODE_OVERRIDE_MAX_SESSIONS=true - SE_NODE_SESSION_TIMEOUT=300 - SE_NODE_GRID_URL=http://localhost:4444 - SE_NODE_DETECT_DRIVERS=false You must choose the correct image for your system architecture by uncommenting the appropriate line. The app service will run your main Python code. Let’s define a standard Dockerfile for this service: # Use a minimal Python image FROM python:3.11-slim # Set working directory WORKDIR /app # Install Python dependencies COPY requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt # Copy project files COPY . /app/ # Set environment variables (Chromium is in a separate container) ENV SELENIUM_REMOTE_URL="http://selenium:4444/wd/hub" # Run Python script CMD ["python", "main.py"] This Dockerfile uses a base Python image and automatically installs the necessary dependencies. Now let’s add the driver initialization script to main.py: import time # Used to create a delay for checking browser functionality import os from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options # WebDriver settings chrome_options = Options() chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--disable-gpu") chrome_options.add_argument("--disable-webrtc") chrome_options.add_argument("--hide-scrollbars") chrome_options.add_argument("--disable-notifications") chrome_options.add_argument("--start-maximized") SELENIUM_REMOTE_URL = os.getenv("SELENIUM_REMOTE_URL", "http://selenium:4444/wd/hub") driver = webdriver.Remote( command_executor=SELENIUM_REMOTE_URL, options=chrome_options ) # Open a test page driver.get("https://www.timeweb.cloud") time.sleep(9999) # Shut down WebDriver driver.quit() In the requirements.txt file, list standard dependencies, including Selenium: attrs==25.1.0 certifi==2025.1.31 h11==0.14.0 idna==3.10 outcome==1.3.0.post0 PySocks==1.7.1 selenium==4.28.1 sniffio==1.3.1 sortedcontainers==2.4.0 trio==0.28.0 trio-websocket==0.11.1 typing_extensions==4.12.2 urllib3==2.3.0 websocket-client==1.8.0 wsproto==1.2.0 Now you can launch the containers: docker compose up -d Expected output: Docker will build and launch the containers. To verify everything is running correctly: docker compose ps You should see two running containers which means everything was loaded successfully. You can now integrate a script in main.py to interact with any site. Debugging Selenium in Docker with VNC In official Selenium Docker images (like seleniarm/standalone-chromium, selenium/standalone-chrome, etc.), direct access to the Chrome DevTools Protocol is usually overridden by Selenium Grid. It generates a new port for each session and proxies it via WebSocket. Arguments like --remote-debugging-port=9229 are ignored or overwritten by Selenium, making direct browser port access impossible from outside the container. Instead, these Docker images offer built-in VNC (Virtual Network Computing), similar to TeamViewer or AnyDesk, but working differently. VNC requires headless mode to be disabled, since it transmits the actual screen content — and if the screen is blank, there will be nothing to see. You can connect to the VNC web interface at: http://<server_ip>:7900 When connecting, you'll be asked for a password. To generate one, connect to the selenium-container via terminal: docker exec -it selenium-container bash Then enter: x11vnc -storepasswd You’ll be prompted to enter and confirm a password interactively. Enter the created password into the VNC web interface, and you’ll gain access to the browser controlled by Selenium inside Docker. From there, you can open DevTools to inspect DOM elements or debug network requests. Conclusion Running Selenium in Docker containers simplifies environment portability and reduces the risk of version conflicts between tools. It also allows visual debugging of tests via VNC, if needed. Just make sure to choose the correct image for your system architecture and disable headless mode when a graphical interface is required. This provides a more flexible and convenient infrastructure for testing and accelerates Selenium integration into CI/CD pipelines.
19 June 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support