Sign In
Sign In

How To Add Swap Space on Ubuntu 22.04

How To Add Swap Space on Ubuntu 22.04
JC Brian Refugia
Technical writer
Ubuntu
23.12.2024
Reading time: 8 min

Managing resources efficiently is vital for maintaining the performance and stability of the OS. In this article, the methods of adding swap space to Ubuntu 22.04 is outlined to help users boost their platform's capacity to carry on memory-intensive activities.

Swap space acts as a virtual extension of physical memory (RAM), allowing the system to offload inactive processes when it is fully utilised. While Ubuntu 22.04 is highly efficient in memory management, adding or increasing paging area can be a practical solution for environments with small data storage unit or when running resource-heavy applications. This article provides a step-by step approach in creation, configuration, and optimisation of swap space, ensuring a smooth and efficient setup tailored to everyone's needs.

Prerequisites

Before adding swap space on Ubuntu 22.04, make sure the following prerequisites are satisfied to avoid potential issues:

  • Administrative Privileges: User must have root or sudo access to the platform to execute commands for creating and configuring swap space.

  • Existing Disk Volume: Confirm that the instance has sufficient free disk storage to allocate for the desired swap size. Deploy the following instruction to check disk space:

df -h

Image27

  • Current Status: Determine whether a swap space already exists and come up with the decision to expand it. Utilise the instruction below to verify:

sudo swapon --show
  • Suitable Performance Needs Assessment: Determine the required capacity of the swap space according to the current storage resource and workload. A common rule is to have at least same amount as the RAM size, but this may vary depending on your use case.

And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS.

What is Swap

A crucial part of Linux memory management, swap space is intended to improve system performance and stability by increasing the system's accessible capacity beyond the physical random-access memory (RAM). The OS frees up memory for running processes by offloading idle or seldom used data to the paging space area when the RAM is completely utilised. This procedure enables the system to manage resource-intensive tasks more effectively and keeps apps from crashing because of memory shortages. Depending on the demands of the user, swap can be implemented in Ubuntu as a file or as a separate disc. This can be useful, but it cannot take the place of enough RAM. Because disc storage has slower read and write rates than physical memory, an over-reliance on this might result in performance loss. Optimising system performance requires an understanding of swap's operation and proper configuration, especially for tasks like managing apps on platforms with limited RAM, operating virtual machines, or compiling huge codebases.

Swap Advantages

Swap space is an important part of Linux environment memory management because it provides a number of benefits. The following advantages are offered by swap:

  • Prevents System Crashes
  • Supports Memory-Intensive Applications
  • Enhances Multitasking

Smoother multitasking without sacrificing speed for platforms managing numerous processes at once by balancing memory use by offloading less important operations.

  • Provides Flexibility

Swap space allows for the dynamic addition or resizing of paging space, which facilitates system requirements adaptation without requiring disc repartitioning.

  • Extends Uptime Period

It is a short-term fix to increase stability and prolong its uptime under high loads in situations where replacing physical memory is not immediately practical.

  • Facilitates Hibernation

Swap is crucial for systems set up to utilise the hibernate feature since it keeps the contents of the RAM in place when the system is turned off, enabling a smooth restart.

  • Supports Low-Memory Systems

For lightweight systems, this is beneficial because it guarantees that critical operations continue to run even when memory is limited on devices with little physical memory.

Swap is essential for increasing overall system resilience and flexibility, especially in resource-constrained contexts, even while it cannot replace physical RAM and shouldn't be over-relied upon.

Swap Disadvantages

Although swap space has several benefits for memory management, there are a few significant drawbacks that should be taken into account when setting it up.

  • Slower Performance Compared to RAM
  • Increased Disk Wear
  • Latency in Resource-Intensive Tasks

When the system relies heavily on swap, tasks that require high memory bandwidth, such as video editing or large-scale data analysis, may experience significant delays due to slower data transfer rates.

  • Limited Effectiveness in Low-RAM Scenarios

While swap can extend memory, it is not a substitute for adequate RAM. On systems with extremely low physical memory, relying on swap may not be enough to handle modern applications efficiently.

  • Hibernation Dependency

If the swap space is insufficient, hibernation may fail as it requires swap to store the contents of the RAM. Misconfigured swap sizes can lead to system errors during hibernation attempts.

  • Additional Storage Allocation

Allocating swap space reduces the available storage for other purposes. For systems with limited disk capacity, dedicating a portion to swap may not be feasible.

  • Complexity in Configuration

Optimising swappiness and settings require careful planning and monitoring. Poor configuration may lead to either underutilisation or excessive reliance, both of which impact system performance.

How to Add Swap Space by Creating a Swap File

Making a swap file in Ubuntu 22.04 to increase swap space is a simple procedure that can assist boost system performance, particularly on systems with low RAM.

Here is a thorough, step-by-step guide to assist you with the process:

  1. Make sure swap space is enabled before making a new file. Run the instruction below.

sudo swapon --show
  1. Based on the RAM capacity and usage needs, choose the swap file's size. A typical rule of thumb is:

    • For systems with less than 2 GB of RAM, swap size is equal to RAM size × 2.
    • For systems with more than 2 GB of RAM, swap size equals RAM size.
  1. Choose the location of the file, which is often the root directory. Adjust to the user's preferred swap size. To do it, use the fallocate command.

sudo fallocate -l 4G /swapfile
  1. If fallocate is unavailable or gives an error, employ the dd command.

sudo dd if=/dev/zero of=/swapfile bs=1M count=4096

Image3

    • bs=1M: Sets the block size to 1 Megabyte.

    • count=4096: Creates a 4GB file (4096 × 1MB).

  1. Verify that the permissions are configured appropriately to prevent unauthorised access. Execute the following command.

sudo chmod 600 /swapfile
  1. It is necessary to format the file as swap space. After that, swap can be activated. Execute the command listed below.      

sudo mkswap /swapfile

Image15

sudo swapon /swapfile
  1. To verify if it has been added, use the instructions listed below, appropriately.

sudo swapon --show

Image20

free -h

Image1

  1. Add the swap file to the /etc/fstab file to guarantee it stays active following a reboot. Perform the following steps.

    • Backup the fstab file before editing.
sudo cp /etc/fstab /etc/fstab.bak
    • Add the swap record in fstab.

echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab
    • Validate using command below.

cat /etc/fstab

Image5

Configuring Swappiness (Optional)

Swappiness controls the kernel's use of swap space. 60 is the default value. Usage rises with higher values and falls with lower values.

  • Verify current swappiness value by running command below.

cat /proc/sys/vm/swappiness

Image13

  • Use the sysctl utility to temporarily modify the swappiness. The value is lowered to 40 from 60 by the subsequent command.

sudo sysctl vm.swappiness=40

Image21

  • To make the changes permanent, run these commands respectively.

echo 'vm.swappiness=40' | sudo tee -a /etc/sysctl.conf

Image22

sudo sysctl -p

Image2

Modify Cache Pressure (Optional)

Cache pressure regulates the kernel's propensity to recover caching memory, which can be lessened with lower values.

  • If for example, a user wants to set VFS Cache Pressure to 40, this can be set using the commands below respectively.

echo 'vm.vfs_cache_pressure=40' | sudo tee -a /etc/sysctl.conf
sudo sysctl -p
  • Verify that the swap file is operational and set up properly. Use the commands below to check it.

sudo swapon --show
free -h

Increasing Swap Space with Swap File

To resize the system's swap file, use the following actions.

  • Temporarily disable the swap file.

sudo swapoff /swapfile
  • Change the size of the swap file to the preferred size. Replace 8G with your desired new size.

    • Using the fallocate command

sudo fallocate -l 8G /swapfile
  • Using the dd command

sudo dd if=/dev/zero of=/swapfile bs=1M count=8192
  • To adjust for the new size, reinitialise the swap file.

sudo mkswap /swapfile
  • Activate the swap file that has been resized.

sudo swapon /swapfile
  • Validate that the swap space has been updated from 4GB to 8GB.

sudo swapon --show
free -h

Conclusion

To sum up, creating a swap file in Ubuntu is a simple procedure that can greatly improve system speed, especially when working with memory-demanding apps or when physical RAM is at limited availability. Without the need for intricate partitioning, users can rapidly increase the virtual memory of their system by following the instructions to create, format, and activate a swap file. The swap space will also be active across reboots if the swap file is made permanent via the /etc/fstab file. The memory management can be further optimised by modifying variables like swappiness. All things considered, making a swap file is a practical and adaptable way to enhance Ubuntu system efficiency and stability.

You can install Ubuntu on a VPS on Hostman.

Ubuntu
23.12.2024
Reading time: 8 min

Similar

Ubuntu

Installing and Configuring Zabbix on Ubuntu 22.04

Zabbix is a popular open-source tool designed for monitoring servers, networks, services, cloud resources, and business metrics. It consists of several components, including: Zabbix Server: The core component responsible for data storage and network service management. Zabbix Agent: A background utility (daemon) that monitors and collects statistics on resources like RAM, CPU, and application metrics. It supports both active (agent requests data) and passive (agent waits for server requests) modes. Zabbix Proxy: An optional component that distributes the load on the Zabbix server. Web Interface: A web panel for tracking system metrics and configuring both Zabbix and monitored components. In this tutorial, we'll install Zabbix 6 on Ubuntu 22.04 and connect and configure one agent. Prerequisites You will need: Two cloud servers or virtual machines running Ubuntu 22.04: one for the Zabbix server and one for the Zabbix agent. A pre-installed MySQL/MariaDB or PostgreSQL database on the host for the Zabbix server. This tutorial uses PostgreSQL. Installing the Zabbix Server All steps should be performed as root or a sudo user. Add the official Zabbix repository: wget https://repo.zabbix.com/zabbix/6.0/ubuntu/pool/main/z/zabbix-release/zabbix-release_6.0-4+ubuntu22.04_all.deb Install the downloaded package: dpkg -i zabbix-release_6.0-4+ubuntu22.04_all.deb Install Zabbix server and dependencies: apt update && apt -y install zabbix-server-pgsql zabbix-frontend-php php8.1-pgsql zabbix-nginx-conf zabbix-sql-scripts zabbix-agent Create a PostgreSQL user and database for Zabbix: sudo -u postgres createuser --pwprompt zabbixsudo -u postgres createdb -O zabbix zabbix Import the Zabbix database schema: zcat /usr/share/zabbix-sql-scripts/postgresql/server.sql.gz | sudo -u zabbix psql zabbix Edit the Zabbix server configuration: nano /etc/zabbix/zabbix_server.conf Find the DBPassword parameter and set the database password. Edit the Nginx configuration for Zabbix: nano /etc/zabbix/nginx.conf Uncomment and set the listen and server_name parameters. Restart and enable services: systemctl restart zabbix-server zabbix-agent nginx php8.1-fpmsystemctl enable zabbix-server zabbix-agent nginx php8.1-fpm Verify the Zabbix server status: systemctl status zabbix-server Configuring the Zabbix Server Further configuration is done via the web interface. Navigate to the domain name and port specified in nginx.conf. Select the language. Verify system requirements. Configure database connection: Enter the database name zabbix, user zabbix, and the password. Set Zabbix server name, time zone, and theme. Review and confirm settings. After successful configuration, log in with the default credentials: Admin and zabbix. Installing the Zabbix Agent Switch to the second server for the Zabbix agent installation. Download the Zabbix repository: wget https://repo.zabbix.com/zabbix/6.0/ubuntu/pool/main/z/zabbix-release/zabbix-release_latest+ubuntu22.04_all.deb Install the downloaded package: dpkg -i zabbix-release_latest+ubuntu22.04_all.deb Install the Zabbix agent: apt update && apt -y install zabbix-agent Edit the Zabbix agent configuration: nano /etc/zabbix/zabbix_agentd.conf Set the parameters:  Server: enter the domain name or IP address of the Zabbix server. ServerActive: enter the same value as above; this parameter is responsible for the active mode, when Zabbix independently requests the necessary data. Hostname: enter the agent hostname exactly as it is specified in the system. You can use the hostname command to check. If the hostname is incorrect, the agent will not be able to connect to the Zabbix server. Restart and enable the Zabbix agent: systemctl restart zabbix-agentsystemctl enable zabbix-agent Verify the agent status: systemctl status zabbix-agent Adding the Zabbix Agent in the Zabbix Server Web Interface Navigate to Configuration > Hosts. Click on Create host. Fill in the host details: Host name: set any convenient name for the Zabbix agent to display in the Zabbix server web interface. Groups: create a new group or select an existing one. Groups are used for organizational purposes and to assign access rights to data. Templates: select a template that is used exactly like the agent installed on the server. Interfaces: Add the IP address or domain name of the Zabbix agent host. If using an IP address, you must enter it in the IP address field and select IP in the Connect to section. If using a domain name, you must enter the name in the DNS name section and select DNS in in the Connect to section. Update and verify: The agent will appear in the list and metrics will be available under Monitoring > Hosts > Graphs. Conclusion Zabbix provides comprehensive monitoring for hardware, networks, and services, making it suitable for both corporate environments and personal use. With this guide, you have set up a Zabbix virtual server and agent on Ubuntu, and you are now ready to monitor various metrics and ensure the health of your infrastructure. Frequently Asked Questions (FAQ) What is the difference between Zabbix Server and Agent? Zabbix Server: The central component that gathers data, calculates triggers, and sends notifications. It also houses the web interface. Zabbix Agent: A lightweight daemon installed on the client (the machine you want to monitor). It collects local metrics (CPU, disk, RAM) and sends them back to the Server. How to install and configure Zabbix Agent on Ubuntu? Install: Run sudo apt install zabbix-agent. Configure: Edit the config file (sudo nano /etc/zabbix/zabbix_agentd.conf) and update the Server= and ServerActive= lines to point to your Zabbix Server's IP address. Start: Run sudo systemctl restart zabbix-agent and sudo systemctl enable zabbix-agent. Where is the Zabbix config file in Ubuntu?  There are two main configuration files depending on what you have installed: Server Config: /etc/zabbix/zabbix_server.conf (Configure DB passwords, caches, etc.) Agent Config: /etc/zabbix/zabbix_agentd.conf (Configure which server to send data to). What is a Zabbix Agent?  It is a small piece of software that runs on the target device. It gathers information directly from the hardware and OS (like "how much drive space is left?") and reports it to the central Zabbix Server. Without the agent, you are limited to "agentless" checks like Ping or SNMP. How much RAM does Zabbix need? For the Agent: Negligible (usually < 64MB). For the Server: It depends on the number of hosts. A small home lab (10-20 hosts) runs fine on 2GB-4GB RAM. A production environment monitoring hundreds of devices should start with 8GB-16GB to accommodate the database (MySQL/PostgreSQL) and caching requirements. How do I check if the Zabbix Agent is communicating with the Server?  On the Zabbix Server, you can use the zabbix_get utility to test the connection manually: zabbix_get -s [Client_IP] -k agent.ping If it returns 1, the connection is successful.
28 January 2026 · 6 min to read
Ubuntu

How to Install and Configure VNC on Ubuntu

Various protocols are used to organize remote access to computers and servers. For Windows, the native protocol is RDP, while for Unix/Linux, we mostly use SSH. However, there is another option: VNC. This guide will cover installing a VNC server, specifically the TightVNC implementation, on Ubuntu 22.04, and explain how to connect to the VNC server. Before that, we'd like to recommend you check the instruction on how to deploy server on Ubuntu. And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. What is VNC? VNC (Virtual Network Computing) is a system for remote access to computers and servers based on the RFB (Remote FrameBuffer) protocol. Using a network connection, it transmits keyboard inputs and mouse movements from one machine to another. VNC is platform-independent and a cross-platform solution. VNC consists of a server and a client: the server provides access to the device's screen, and the client displays the server's screen. We will use TightVNC, which is open-source, optimized for slow connections, and widely supported by third-party VNC client programs. VNC vs. RDP While VNC and RDP both provide remote access, there are key differences. RDP is a proprietary protocol developed by Microsoft for Windows, while VNC is cross-platform, running on Windows, Linux/Unix, and macOS. VNC is open-source and free. RDP transmits a video stream using a capture device, displaying the remote desktop after the connection is initiated. VNC, however, sends pixel data directly. RDP includes built-in encryption and authentication integration with Windows, while VNC requires additional security configuration. RDP also supports device forwarding, file transfers, and peripheral access (e.g., USB drives and printers), while VNC primarily focuses on remote desktop functionality. Prerequisites To install and configure VNC, you'll need: A VPS running Ubuntu 22.04. A VNC client program installed on any operating system, as VNC is cross-platform. Some client programs are listed in the "Connecting to the VNC Server" section. Installing TightVNC and Xfce First, we'll install the TightVNC server and the Xfce desktop environment, which is lightweight and optimized for TightVNC. The following commands should be run as the root user or a user with sudo privileges. Update the package list and install the required packages: apt update && apt -y install xfce4 xfce4-goodies tightvncserver If you are using UFW, iptables, or another firewall tool, open port 5901 for VNC connections: For UFW: ufw allow 5901 You can also temporarily disable UFW for testing: systemctl stop ufw For iptables: To allow incoming connections on port 5901: iptables -I INPUT -p tcp --dport 5901 -j ACCEPT To allow outgoing connections on port 5901: iptables -I OUTPUT -p tcp --sport 5901 -j ACCEPT Configuring the TightVNC Server Once TightVNC is installed, we need to configure it. Set the password for accessing the remote host by running the vncserver command: vncserver The password should be between 6 and 8 characters. If it's longer, TightVNC will truncate it to 8 characters. You will be prompted to set a view-only password (optional). This password allows users to view the remote screen without controlling it. To set this password, type y and provide a password. If you don't need this feature, enter n. After running vncserver, you’ll see the following output: Creating default startup script /root/.vnc/xstartupStarting applications specified in /root/.vnc/xstartupLog file is /root/.vnc/[hostname]:1.log Stop the VNC server to configure it further: vncserver -kill :1 Backup the default configuration file before editing it: cp ~/.vnc/xstartup ~/.vnc/xstartup.bak Open the configuration file in a text editor: nano /root/.vnc/xstartup Add the following line to the end of the file: startxfce4 Save the changes and exit. Restart the VNC server: vncserver Managing TightVNC with systemd We’ll create a systemd service to manage TightVNC more easily. Create a new unit file: nano /etc/systemd/system/vncserver.service Add the following content: [Unit] Description=TightVNC server After=syslog.target network.target [Service] Type=forking User=root PAMName=login PIDFile=/root/.vnc/%H:1.pid ExecStartPre=-/usr/bin/vncserver -kill :1 > /dev/null 2>&1 ExecStart=/usr/bin/vncserver ExecStop=/usr/bin/vncserver -kill :1 [Install] WantedBy=multi-user.target Reload the systemd daemon: systemctl daemon-reload Enable the service to start on boot: systemctl enable --now vncserver Check the VNC server status: systemctl status vncserver If the status shows "active (running)," the server is running successfully. Connecting to the VNC Server There are various VNC client programs, both free and paid. Examples include UltraVNC and TightVNC Viewer for Windows, Remmina for Linux, and RealVNC for macOS. For example, to connect using TightVNC Viewer on Windows: Enter the server's IP address and port in the format: IP_address::port Note: TightVNC requires :: to separate the IP and port, whereas other programs may use :. When prompted, enter the password you set earlier. Once authenticated, the remote desktop will appear. TightVNC Viewer allows saving sessions for quick connections. Click the save icon, provide a name, and save the file with a .vnc extension. You can also save the password for easier future access. For increased security, it's recommended to use SSH tunnels when connecting over VNC. Conclusion VNC is a convenient system for remote access, often used for technical support or server maintenance. This guide provides a step-by-step process for installing and configuring TightVNC on an Ubuntu server and connecting to it from a remote machine. With simple setup steps, you can have a VNC server running in no time. Especially, if you use our low-latency US based VPS. If you want to know more about Hostman server solutions, you can check the most affordable VPS Servers.  Frequently Asked Questions (FAQ) What is the best VNC server for Linux?  For most users, TigerVNC or TightVNC are the best choices. TigerVNC: Known for speed and performance. TightVNC: Highly reliable and lightweight, great for low-bandwidth connections. RealVNC: Good for enterprise features but less common for open-source home labs. How do I install and configure VNC on Ubuntu?  The general process involves three steps: Install the Desktop: Ensure you have a desktop environment (like XFCE or GNOME) installed: sudo apt install xfce4. Install VNC Server: Run sudo apt install tigervnc-standalone-server. Configure: Run vncserver to set your password and generate the initial config files, then edit ~/.vnc/xstartup to tell VNC which desktop to launch. Is VNC better than RDP?  It depends on the use case. RDP (Remote Desktop Protocol): Generally offers better performance, audio support, and a smoother experience over slower networks because it transmits semantic instructions rather than just pixels. VNC (Virtual Network Computing): Is platform-independent (works on Mac, Linux, Windows, Android equally well) and uses a simpler "pixel-based" protocol, making it easier to troubleshoot across different systems. How do I check the status of VNC server in Ubuntu?  If you are running it manually, use: vncserver -list This will show all active display numbers and their process IDs. If you set it up as a systemd service, run: sudo systemctl status vncserver@1.service (adjusting the number to match your display ID). How do I find my VNC server address?  The address is your server's IP address followed by the port number. Find your IP: ip a (e.g., 192.168.1.50). Find your Port: Add 5900 to your display number. (Display :1 = Port 5901). Address: 192.168.1.50:5901. Why is my VNC screen blank or grey? This is the most common VNC error. It means the xstartup script is missing or has the wrong permissions. Ensure the file is executable (chmod +x ~/.vnc/xstartup) and contains the correct command to start your specific desktop session (e.g., startxfce4).
27 January 2026 · 7 min to read
Ubuntu

How to Install VNC on Ubuntu

If you need to interact with a remote server through a graphical interface, you can use VNC technology.Through a network, users can connect remotely to a server using VNC (Virtual Network Computing). It employs the RFB protocol to send screen images and input data from different devices (such keyboards and mice) and runs on a client-server architecture. Ubuntu, Windows, macOS, and other operating systems are among those that VNC supports. The ability to connect several users at once is another benefit of VNC, which can be helpful for group tasks or training sessions. Choose your server now! And if you’re looking for a reliable, high-performance, and budget-friendly solution for your workflows, Hostman has you covered with Linux VPS Hosting options, including Debian VPS, Ubuntu VPS, and VPS CentOS. In this guide, we will describe how to install VNC on Ubuntu, using a Hostman cloud server with Ubuntu 22.04 as an example. Finished installation of VNC on Ubuntu Step 1: Preparing to Install VNC Before starting the installation process on both the server and the local machine, there are a few prerequisites to review.  Here is a list of what you’ll need to complete the installation: A Server Running Ubuntu 22.04. In this guide, we will use a cloud server from Hostman with minimal hardware configuration. Hostman's plan selection in admin panel A User with sudo Privileges. You should perform the installation as a regular user with administrative privileges. Select a Graphical Interface. You’ll need to choose a desktop environment that you will use to interact with the remote server after installing the system on both the server and the local machine. A Computer with a VNC Client Installed.  At the moment, the console is the sole method of communication with a rented server running Ubuntu 22.04. You must install a desktop environment and VNC on the server in order to enable remote management through a graphical interface. The desktop environments and VNC servers that are compatible with Ubuntu servers are listed below. VNC Servers: TightVNC Server. One of the most popular VNC servers for Ubuntu. It is easy to set up and offers good performance. RealVNC Server. RealVNC provides a commercial solution for remote access to servers across various Linux distributions, including Ubuntu, Debian, Fedora, Arch Linux, and others. Desktop Environments: Xfce. A lightweight and fast desktop environment, ideal for remote sessions over VNC. It uses fewer resources than heavier desktop environments, making it an excellent choice for servers and virtual machines. GNOME. The default Ubuntu desktop environment, offering a modern and user-friendly interface. It can be used with VNC but will consume more resources than Xfce. KDE Plasma. Another popular desktop environment that provides a wide range of features and a beautiful design. The choice of VNC server and desktop environment depends on the user’s specific needs and available resources. TightVNC and Xfce are excellent options for stable remote sessions on Ubuntu, as they do not require high resources. In the next step, we will describe how to install them on the server in detail. Step 2: Installing the Desktop Environment and VNC Server To install the VNC server on Ubuntu along with the desktop environment, connect to the server and log in as a regular user with administrative rights. Update the Package List  After logging into the server, run the following command to update the packages from the connected repositories: sudo apt update Install the Desktop Environment  Next, install the previously selected desktop environment. To install Xfce, enter: sudo apt install xfce4 xfce4-goodies Here, the first package provides the basic Xfce desktop environment, while the second includes additional applications and plugins for Xfce, which are optional. Install the TightVNC Server  To install TightVNC, enter: sudo apt install tightvncserver Start the VNC Server  Once the installation is complete, initialize the VNC server by typing: vncserver This command creates a new VNC session with a specific session number, such as :1 for the first session, :2 for the second, and so on. This session number corresponds to a display port (for example, port 5901 corresponds to :1). This allows multiple VNC sessions to run on the same machine, each using a different display port. This command will ask you to create a password during the initial setup, which is necessary for users to access the server's graphical user interface. Don't forget to verify your password to run VNC on Ubuntu Set the View-Only Password (Optional)  After setting the main password, you’ll be prompted to set a password for view-only mode. View-only mode allows users to view the remote desktop without making any changes, which is helpful for demonstrations or when limited access is needed. If you need to change the passwords set above, use the following command: vncpasswd Now you have a VNC session. VNC on Ubuntu is running In the next step, we will set up VNC to launch the Ubuntu server with the installed desktop environment. Step 3: Configuring the VNC Server The VNC server needs to know which desktop environment it should connect to. To set this up, we’ll need to edit a specific configuration file. Stop Active VNC Instances  Before making any configurations, stop any active VNC server instances. In this guide, we’ll stop the instance running on display port 5901. To do this, enter: vncserver -kill :1 Simple command to stop VNC running on Ubuntu Here, :1 is the session number associated with display port 5901, which we want to stop. Create a Backup of the Configuration File  Before editing, it’s a good idea to back up the original configuration file. Run: mv ~/.vnc/xstartup ~/.vnc/xstartup.bak Edit the Configuration File  Now, open the configuration file in a text editor: nano ~/.vnc/xstartup Replace the contents with the following: #!/bin/bashxrdb $HOME/.Xresourcesstartxfce4 & #!/bin/bash: This line is called a "shebang," and it specifies that the script should be executed using the Bash shell. xrdb $HOME/.Xresources: This line reads settings from the .Xresources file, where desktop preferences like colors, fonts, cursors, and keyboard options are stored. startxfce4 &: This line starts the Xfce desktop environment on the server. Make the Configuration File Executable To allow the configuration file to be executed, use: chmod +x ~/.vnc/xstartup Start the VNC Server with Localhost Restriction Now that the configuration is updated, start the VNC server with the following command: vncserver -localhost The -localhost option restricts connections to the VNC server to the local host (the server itself), preventing remote connections from other machines. You will still be able to connect from your computer, as we’ll set up an SSH tunnel between it and the server. These connections will also be treated as local by the VNC server. The VNC server configuration is now complete. Step 4: Installing the VNC Client and Connecting to the Server Now, let’s proceed with installing a VNC client. In this example, we’ll install the client on a Windows 11 computer. Several VNC clients support different operating systems. Here are a few options:  RealVNC Viewer. The official client from RealVNC, compatible with Windows, macOS, and Linux. TightVNC Viewer. A free and straightforward VNC client that supports Windows and Linux. UltraVNC. Another free VNC client for Windows with advanced remote management features. For this guide, we’ll use the free TightVNC Viewer. Download and Install TightVNC Viewer Visit the official TightVNC website, download the installer, and run it. Download VNC from official website In the installation window, click Next and accept the license agreement. Then, select the custom installation mode and disable the VNC server installation, as shown in the image below. This is what you need to install Click Next twice and complete the installation of the VNC client on your local machine. Set Up an SSH Tunnel for Secure Connection To encrypt your remote access to the VNC server, use SSH to create a secure tunnel. On your Windows 11 computer, open PowerShell and enter the following command: ssh -L 56789:localhost:5901 -C -N -l username server_IP_address Make sure that OpenSSH is installed on your local machine; if not, refer to Microsoft’s documentation to install it. This command configures an SSH tunnel that forwards the connection from your local computer to the remote server over a secure connection, making VNC believe the connection originates from the server itself. Here’s a breakdown of the flags used: -L sets up SSH port forwarding, redirecting the local computer’s port to the specified host and server port. Here, we choose port 56789 because it is not bound to any service. -C enables compression of data before transmitting over SSH. -N tells SSH not to execute any commands after establishing the connection. -l specifies the username for connecting to the server. Connect with TightVNC Viewer After creating the SSH tunnel, open the TightVNC Viewer and enter the following in the connection field: localhost:56789 You’ll be prompted to enter the password created during the initial setup of the VNC server. Once you enter the password, you’ll be connected to the VNC server, and the Xfce desktop environment should appear. Stop the SSH Tunnel To close the SSH tunnel, return to the PowerShell or command line on your local computer and press CTRL+C. You found out how to install VNC on Ubuntu Conclusion This guide has walked you through the step-by-step process of setting up VNC on Ubuntu 22.04. We used TightVNC Server as the VNC server, TightVNC Viewer as the client, and Xfce as the desktop environment for user interaction with the server. We hope that using VNC technology helps streamline your server administration, making the process easier and more efficient. We're prepared more detailed instruction on how to create server on Ubuntu if you have some trouble deploying it. Or you can use our low-latency US based VPS! Choose your server now! Frequently Asked Questions (FAQ) How to install VNC server on Ubuntu via command line?  The most common lightweight server is TightVNC. To install it, open your terminal and run: Update lists: sudo apt update Install the package: sudo apt install tightvncserver Initialize it (and set a password) by running: vncserver How do I uninstall VNC server on Ubuntu?  To remove the software and your configuration files, follow these steps: Stop the VNC session: vncserver -kill :1 Remove the package: sudo apt remove tightvncserver --purge (Optional) Delete config files: rm -rf ~/.vnc Is VNC secure?  By default, no. VNC traffic is not encrypted, meaning passwords and keystrokes can be intercepted. It is highly recommended to tunnel your VNC connection through SSH rather than opening the VNC port (5901) directly to the internet. Why do I see a gray screen when I connect?  This "gray screen of death" usually means the VNC server doesn't know which desktop environment to load. You need to edit the ~/.vnc/xstartup file and add the command for your desktop (e.g., startxfce4 & for XFCE or gnome-session & for GNOME). Which port does VNC use?  VNC uses port 5900 + Display ID. Display :1 uses port 5901. Display :2 uses port 5902. You must ensure these ports are allowed on your firewall if you are not using an SSH tunnel. What is the difference between TigerVNC, RealVNC, and TightVNC? TightVNC: Lightweight, reliable, and great for slower connections. Very popular for Linux. TigerVNC: A high-performance fork of TightVNC, often faster on modern hardware. RealVNC: Often proprietary/commercial, offers cloud connectivity but is less common for open-source self-hosting.
21 January 2026 · 10 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support