Sign In
Sign In

Converting a Container to a Virtual Machine

Converting a Container to a Virtual Machine
Hostman Team
Technical writer
Docker
22.01.2025
Reading time: 11 min

A tricky question often asked during technical interviews for a DevOps engineer position is: "What is the difference between a container and a virtual machine?" Most candidates get confused when answering this question, and some interviewers themselves don’t fully understand what kind of answer they want to hear. To clearly understand the differences and never have to revisit this question, we will show you how to convert a container into a virtual machine and run it in the Hostman cloud.

The process described in this article will help better understand the key differences between containers and virtual machines and demonstrate each approach's practical application. This article will be especially useful for working with systems requiring a specific environment.

We will perform all further actions in a Linux OS environment and use a virtual machine based on the KVM hypervisor created with VirtualBox to prepare the necessary image. You can also use other providers such as VMware, QEMU, or virt-manager.

Configuration of Our Future Virtual Machine

Let’s start this exciting journey by creating a container. For this, we will use Docker. If it is not installed yet, install it using the command below (before that, you may need to update the list of available packages with sudo apt update):

sudo apt install docker.io -y

Create a container based on the minimal Alpine image and attach to its shell:

sudo docker run --name test -it alpine sh

Install the necessary programs using the apk package manager that you plan to use in the future virtual machine. You don’t necessarily have to limit yourself to packages from the standard Alpine repository — you can also add other repositories or, if needed, download or compile packages directly in the container.

apk add tmux busybox-extras openssh-client openssh-server iptables dhclient ppp socat tcpdump vim openrc mkinitfs grub grub-bios

Here’s a list of minimally required packages:

  • tmux — a console multiplexer. It will be useful for saving user sessions and the context of running processes in case of a network disconnect.

  • busybox-extras — an extended version of BusyBox that includes additional utilities but remains a compact distribution of standard tools.

  • openssh-client and openssh-server — OpenSSH client and server, necessary for setting up remote connections.

  • iptables — a utility for configuring IP packet filtering rules.

  • dhclient — a DHCP client for automating network configuration.

  • ppp — a package for implementing the Point-to-Point Protocol.

  • socat — a program for creating tunnels, similar to netcat, with encryption support and an interactive shell.

  • tcpdump — a utility for capturing traffic. Useful for debugging network issues.

  • vim — a console text editor with rich customization options. It is popular among experienced Linux users.

  • openrc — an initialization system based on dependency management that works with SysVinit. It’s a key component needed to convert a container into a virtual machine, as containers do not have it by default.

  • mkinitfs — a package for generating initramfs, allowing you to build necessary drivers and modules that are loaded during the initial system initialization.

  • grub and grub-bios — OS bootloader. In this case, we are specifically interested in creating a bootloader for BIOS-based systems using an MBR partition table.

Set the root password:

export PASSWORD=<your secret password>  
echo "root:$PASSWORD" | chpasswd  

Create a user. You will need it for remote SSH access later:

export USERNAME=<username>  
adduser -s /bin/sh $USERNAME  

Set the SUID bit on the executable file busybox. This is necessary so that the user can execute commands with superuser privileges:

chmod u+s /bin/busybox  

Create a script to be executed during system initialization:

cat <<EOF > /etc/local.d/init.start  
#!/bin/sh  

dmesg -n 1  
mount -o remount,rw /  
ifconfig lo 127.0.0.1 netmask 255.0.0.0  
dhclient eth0  
# ifconfig eth0 172.16.0.200 netmask 255.255.255.0  
# route add -net default gw 172.16.0.1  
busybox-extras telnetd  
EOF  

Let’s go through the script line by line:

  • dmesg -n 1 — Displays critical messages from the Linux kernel's message buffer so that potential issues can be detected during startup.

  • mount -o remount,rw / — Remounts the root file system (/) with the rw (read-write) flag. This allows modifications to the file system after boot.

  • ifconfig lo 127.0.0.1 netmask 255.0.0.0 — Configures the loopback interface (lo) with IP address 127.0.0.1 and subnet mask 255.0.0.0. This ensures internal network communication on the machine.

  • dhclient eth0 — Runs the DHCP client for the eth0 interface to automatically obtain IP address settings and other network parameters from a DHCP server.

  • # ifconfig eth0 172.16.0.200 netmask 255.255.255.0 — This line is commented out, but if uncommented, it will assign a static IP address 172.16.0.200 and subnet mask 255.255.255.0 to the eth0 interface. We included this line in the script in case a static network configuration is needed.

  • # route add -net default gw 172.16.0.1 — This line is also commented out, but if uncommented, it will add a default route with gateway 172.16.0.1. This determines how packets will be routed outside the local network.

  • busybox-extras telnetd — Starts the Telnet server. Please note that using the Telnet protocol in production environments is not recommended due to the lack of encryption for data transmission.

Make the script executable:

chmod +x /etc/local.d/init.start

Add the script to the autostart:

rc-update add local

Add the OpenSSH server daemon to the autostart. This will allow you to connect to the cloud server via SSH later:

rc-update add sshd default

Set the default DNS server:

echo nameserver 8.8.8.8 > /etc/resolv.conf

Exit the terminal using the exit command or the keyboard shortcut CTRL+D. The next step is to save the container's file system to the host as an archive, which can also be done using Docker. In my case, the final artifact is only 75 megabytes in size.

sudo docker export test > test.tar

Transforming a Docker Image into a Virtual Machine Image

Containers are a Linux-specific technology since they don't have their own kernel and instead rely on abstractions of the host's Linux kernel to provide isolation and resource management. The key abstractions include:

  • namespaces: isolation for USER, TIME, PID, NET, MOUNT, UTS, IPC, CGROUP namespaces.

  • cgroups: limitations on resources like CPU, RAM, and I/O.

  • capabilities: a set of capabilities for executing specific privileged operations without superuser rights.

These kernel components make Docker and other container technologies closely tied to Linux, meaning they can't natively run on other operating systems like Windows, macOS, or BSD.

For running Docker on Windows, macOS, or BSD, there is Docker Desktop, which provides a virtual machine with a minimal Linux-based operating system kernel. Docker Engine is installed and running inside this virtual machine, enabling users to manage containers and images in their usual environment.

Since we need a full operating system and not just a container, we will require our own kernel.

  1. Create the image file we will work with:

truncate -s 200M test.img
  1. Use fdisk to create a partition on the test.img image:

echo -e "n\np\n1\n\n\nw" | fdisk test.img
    • n — create a new partition
    • p — specify that this will be a primary partition
    • 1 — the partition number
    • \n\n — use default values for the start and end sectors
    • w — write changes
  1. Associate the test.img file with the /dev/loop3 device, starting from an offset of 2048 blocks (1 MB):

sudo losetup -o $[2048*512] /dev/loop3 test.img

Note that /dev/loop3 may already be in use. You can check used devices with:

losetup -l
  1. Format the partition linked to /dev/loop3 as EXT4:

sudo mkfs.ext4 /dev/loop3
  1. Mount the partition at /mnt:

sudo mount /dev/loop3 /mnt
  1. Extract the Docker image (test.tar) into the /mnt directory:

sudo tar xvf test.tar -C /mnt
  1. Create the /mnt/boot directory to store the bootloader and kernel files:

sudo mkdir -pv /mnt/boot
  1. Download the Linux kernel source code:

wget https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.8.9.tar.xz
  1. Extract the Linux kernel source code in the current directory:

tar xf linux-6.8.9.tar.xz
  1. Install the necessary packages for building the Linux kernel:

sudo apt install git fakeroot build-essential ncurses-dev xz-utils libssl-dev bc flex libelf-dev bison -y
  1. Navigate to the kernel source directory and create the default configuration file:

cd linux-6.8.9
make defconfig
  1. Add necessary configuration options to the .config file:

echo -e "CONFIG_BRIDGE=y\nCONFIG_TUN=y\nCONFIG_PPP=y\nCONFIG_PPP_ASYNC=y\nCONFIG_PPP_DEFLATE=y" >> .config
    • CONFIG_BRIDGE=y — Enables network bridge support, allowing multiple network interfaces to be combined into one.

    • CONFIG_TUN=y — Enables support for virtual network interfaces like TUN/TAP, useful for VPN setups.

    • CONFIG_PPP=y — Enables support for the Point-to-Point Protocol (PPP).

    • CONFIG_PPP_ASYNC=y — Enables asynchronous PPP for serial ports.

    • CONFIG_PPP_DEFLATE=y — Enables PPP data compression using the DEFLATE algorithm.

  1. Prepare the source code for building:

make prepare -j4
  1. Create the necessary scripts, build the compressed kernel image (bzImage) and the kernel modules:

make scripts -j4
make bzImage -j4
make modules -j4
  1. Install the built kernel and modules into the /mnt/boot directory (which contains the virtual machine image filesystem):

sudo make INSTALL_PATH=/mnt/boot install
sudo make INSTALL_MOD_PATH=/mnt modules_install
  1. Install the GRUB bootloader into the /mnt/boot directory. Make sure you're in the directory containing the test.img file:

sudo grub-install --target=i386-pc --boot-directory=/mnt/boot/test.img --modules='part_msdos'
  1. Bind-mount the host system’s /proc, /sys, and /dev directories to the /mnt directory. This is necessary for creating the initramfs:

sudo mount --bind /proc /mnt/proc/
sudo mount --bind /sys /mnt/sys/
sudo mount --bind /dev /mnt/dev/
  1. Change root (chroot) into the /mnt filesystem using a shell:

sudo chroot /mnt /bin/sh
  1. Generate the initial RAM filesystem (initramfs) for the kernel version you are working with:

mkinitfs -k -o /boot/initrd.img-6.8.9 6.8.9
  1. Generate the GRUB bootloader configuration file:

grub-mkconfig -o /boot/grub/grub.cfg

By completing these steps, you will have created a small virtual machine image with a fully working Linux kernel, a bootloader (GRUB), and an initramfs.

Local Verification of the Built Image

For local verification, it’s most convenient to use QEMU. This package is available for Windows, macOS, and Linux. Install it by following the instructions for your OS on the official website.

  1. Convert the test.img to the qcow2 format. This will reduce the size of the final image from 200 MB to 134 MB.

qemu-img convert test.img -O qcow2 test.qcow2
  1. Run the image using QEMU.

qemu-system-x86_64 -hda test.qcow2

If all steps were completed correctly, the initialization process will be successful, and an interactive menu for entering the login and password will appear.

To check the version of the installed kernel, use the uname -a command, which will output the necessary information.

Creating a Virtual Machine in Hostman

Go to the Cloud Servers section and start creating a new server. Select the prepared and tested image as the server’s base. To do this, first add it to the list of available images. Supported formats include: iso, qcow2, vmdk, vhd, vhdx, vdi, raw, img.

0f245af6 1c65 43a9 Beb7 Cfc11492f439

Upload the image in one of the available ways: from your computer or by link.

A97f348d C383 4c0b Bc98 Cdbbd5bc2108

Note that after uploading, the image will also be available via URL.

5b6a2998 9f30 4336 85c8 5bf316a9f0d8

Continue with the creation of the cloud server and specify the other parameters of its configuration. Since the image is minimal, it can be run even on the smallest configuration.

Once the cloud server is created, go to the Console tab and verify whether the virtual machine was successfully created from the image.

Image2

The virtual machine has been created and works correctly.

Image1

Since we added the OpenSSH daemon to the autostart in advance, it is now possible to establish a full remote connection to the server using the username, IP address, and password.

C57a8bf8 C7cf 475d 9e34 Fce3bfe3640b

Conclusion

To turn a container into a full-fledged lightweight virtual machine, we sequentially added key components: the OpenRC initialization system, GRUB bootloader, Linux kernel, and initramfs. This process highlighted the importance of each component in the overall virtual machine architecture and demonstrated the practical differences from container environments.

As a result of this experiment, we realized the importance of understanding the architecture and functions of each component to successfully create images for specific needs and to manage virtual machines more effectively from a resource perspective. The image built in this article is quite minimal since it is a Proof-of-Concept, but one can go even further. For example, you could use a special guide to minimize the kernel and explore minimal Linux distributions such as Tiny Core Linux or SliTaz. On the other hand, if your choice is to add functionality by increasing the image size, we strongly recommend checking out the Gentoo Wiki. This resource offers extensive information on fine-tuning the system.

Docker
22.01.2025
Reading time: 11 min

Similar

Docker

How to Install Docker on MacOS

Docker is a platform that makes it easier to create, deploy, and operate applications in containers. Containers enable developers to bundle an application's dependencies, including as libraries, frameworks, and runtime environments, and ship it as a single package. This ensures that the program runs reliably and consistently, independent of the environment in which it is deployed. If you have troubles with that, here's our instruction how to deploy server with Docker. Docker allows you to automate the deployment of software inside lightweight, portable containers. These containers may operate on any system with Docker installed, making it simple to deploy apps across several settings, such as a developer's laptop, a testing server, or a production environment on the cloud. Docker also includes tools for managing and orchestrating containers at scale, making it simpler to deploy, scale, and manage complex applications in production environments. Below are the requirements to prepare for the installation of docker on MacOS:  A supported version of MacOS. Docker Desktop is compatible with the latest macOS versions. This includes the current macOS release as well as the two previous releases. As new major versions of macOS become widely available, Docker stops supporting the oldest version and instead supports the most recent version (along with the prior two). RAM: minimum of 4 GB. This is to optimize Docker performance especially when operating multiple containers.  In installing docker, you can either install it interactively or manually or via the command line interface. Here’s the guide on how to do the installation with both methods. Manual Installation Download the installer from the official docker website using the following links: Apple Silicon processor Intel chip processor Install Docker Desktop by double-clicking the Docker.dmg:  And drag and drop it to the Application folder. By default, the Docker Desktop is installed at /Applications/Docker. Wait for the copying to finish. Double-click the Docker from the Applications folder to proceed with the installation. Click Accept to continue in the Docker Subscription Service Agreement page. From the installation window, choose either: Use recommended settings (Requires password) Use advanced settings Click Finish.  Verify if installation is successful. A Docker icon should appear on the menu bar when the Docker Desktop is installed and running. A notification will appear stating that Docker is running. Install using Command Line Interface Once Docker.dmg is downloaded from the official docker website, login as a super user / root in a terminal to install Docker Desktop in the Application folder. Execute the below commands respectively.  hdiutil attach Docker.dmg /Volumes/Docker/Docker.app/Contents/MacOS/install hdiutil detach /Volumes/Docker If running as a normal user, execute the command with sudo: sudo hdiutil attach Docker.dmg sudo /Volumes/Docker/Docker.app/Contents/MacOS/install sudo hdiutil detach /Volumes/Docker Installation might take some time to complete since the system may do various security checks while installing Docker on Mac. Troubleshooting Some of the common issues that the user might encounter during the installation of MacOS are:  Users may not check the MacOs version of their machine. Take note of the system requirements when installing Docker on MacOS to avoid installation failure and unexpected behavior (like docker image becomes corrupted). Errors during the installation process may occur such as failed downloads, incomplete installation, etc. Go back and check the system and hardware compatibility of the machine.  Conflict with existing software. This requires troubleshooting and investigating system logs. Usually, this can be solved by removing the problematic software.  Permission and security issues. When installing Docker on MacOS, ensure that the machine has all the required permission to access system resources, like directory, network, etc.  Conclusion To summarize, installing Docker on MacOS provides various opportunities for both developers and system administrators. Docker technology provides resources with an enhanced development workflow, an efficient procedure for delivering apps, and consistent system environments. Embrace containerization to broaden your development horizons. Check what Hostman VPS Servers can give you.
30 April 2025 · 4 min to read
Docker

Installing and Using Nexus Repository for Artifact Storage

In software development, "artifact" is a component of a developed software product. Artifacts include executable and binary files, software packages, and more. As the product's architecture and functionality increase, the number of artifacts grows exponentially, and you need a reliable storage solution that can manage large volumes of artifacts efficiently.  One such solution is Nexus Repository by Sonatype.  Nexus supports over 15 artifact formats, including APT, Docker, Go, Helm, Maven, npm, PyPi, and more.  There are two versions of Nexus Repository: Free version – Includes essential repository management features. Commercial version – Offers customer support and a broader range of supported artifact types. In this guide, we will install the free version of Nexus Repository. Prerequisites You can install Nexus Repository on a Linux, Windows, or MacOS machine. In this guide, we will use a Hostman cloud server running Ubuntu. The server must meet the following minimum requirements: 4-core CPU. 8-core or higher is recommended. 8 GB RAM  50 GB of free disk space (excluding OS and other installed software). If there is insufficient space, Nexus will not start. The official Sonatype website provides recommended system requirements based on the number of repositories and stored artifacts. Installing Nexus Repository Step 1: Install Java First, update the package list: sudo apt update Then, install Java 8 using OpenJDK: sudo apt -y install openjdk-8-jre-headless After installation, verify Java's version: java -version If you have multiple Java versions installed, switch to Java 8: sudo update-alternatives --config java Select the correct version using the TAB key and confirm with Enter. Step 2: Download and Extract Nexus We will install Nexus in the /opt directory. Download the latest Nexus archive: sudo wget https://download.sonatype.com/nexus/3/latest-unix.tar.gz Extract the archive to /opt: sudo tar -zxvf latest-unix.tar.gz -C /opt Rename the extracted directory (for easier management): sudo mv /opt/nexus-3.61.0-02 /opt/nexus Make sure to specify the correct version number in your case.  Step 3: Create a Dedicated User for Nexus Create a new user named nexus: sudo adduser nexus Disable direct login for this user: sudo usermod nexus -s Set the correct ownership for Nexus directories: sudo chown -R nexus:nexus /opt/nexus /opt/sonatype-work Step 4: Configure Nexus Edit the Nexus configuration file: sudo nano /opt/nexus/bin/nexus.rc Uncomment (remove #) and set the user as nexus: run_as_user="nexus" Save and exit the file. Step 5: Create a Systemd Service for Nexus Create a new service file: sudo nano /etc/systemd/system/nexus.service Add the following content: [Unit] Description=Nexus Repository Manager After=network.target [Service] Type=forking LimitNOFILE=65536 ExecStart=/opt/nexus/bin/nexus start ExecStop=/opt/nexus/bin/nexus stop User=nexus Restart=on-abort [Install] WantedBy=multi-user.target Save and exit the file. Step 6: Start and Enable Nexus Start Nexus: sudo systemctl start nexus Check Nexus status: systemctl status nexus If the status is active, Nexus is running successfully. Enable Nexus to start on boot: sudo systemctl enable nexus Step 7: Verify Nexus Startup Nexus takes 2-3 minutes to fully start. To check the logs: tail -f /opt/sonatype-work/nexus3/log/nexus.log Once you see: Started Sonatype Nexus OSS Nexus is ready. By default, the Nexus web interface is accessible on port 8081: http://your-server-ip:8081 Initial Setup of Nexus Repository Step 1: Log into Nexus Open the Nexus web interface. Click the Sign in button (top-right corner). Retrieve the default admin password by running: cat /opt/sonatype-work/nexus3/admin.password Use this password to log in as admin. Step 2: Initial Configuration Set a new password for the admin user. Enable or disable anonymous access: Enabled: Any user with the repository URL can browse/download artifacts without authentication. Disabled: Authentication (login/password) is required. Nexus is now ready to use. Creating a Docker Repository in Nexus Step 1: Create a Docker Repository Log in as admin. Go to Server Administration and Configuration (gear icon). In the left menu, select Repositories. Click Create repository. Choose docker (hosted). Step 2: Configure the Repository Nexus supports three types of repositories: Hosted: Stores artifacts directly in Nexus. Proxy: Fetches artifacts from remote repositories (e.g., APT). Group: Combines multiple repositories into one unified endpoint. For a Docker repository: Set a repository name, e.g., docker-images. Enable HTTP access (check the box). Assign a port number (e.g., 8083). Save the settings. Step 3: Configure Docker to Work with Nexus By default, Docker does not allow HTTP connections. To enable HTTP access: Edit or create the Docker daemon configuration file: sudo nano /etc/docker/daemon.json Add the following configuration: { "insecure-registries": ["166.1.227.189:8083"] } (Replace 166.1.227.189:8083 with your Nexus server IP and port.) Save and exit the file. Restart the Docker service: sudo systemctl restart docker Warning: Restarting Docker affects running containers. Containers without the --restart=always flag may not restart automatically. Step 4: Push a Docker Image to Nexus Log in to Nexus via Docker: docker login 166.1.227.189:8083 You can use the admin username and the password you set earlier. Tag an image (e.g., alpine): docker tag alpine:latest 166.1.227.189:8083/alpine-test Verify the new tag: docker images Push the image to Nexus: docker push 166.1.227.189:8083/alpine-test Confirm the upload: Open the Nexus web interface. Go to the docker-images repository. The alpine-test image should be listed. Your Nexus repository is now set up for Docker image storage! HTTPS Configuration The correct approach when working with Docker repositories is to use the HTTPS protocol. To configure HTTPS in Nexus, follow these steps: Navigate to the /opt/nexus/etc/ssl directory: cd /opt/nexus/etc/ssl Use keytool to generate a self-signed certificate: sudo keytool -genkeypair -keystore keystore.jks -storepass test12345 -keypass test12345 -alias jetty -keyalg RSA -keysize 2048 -validity 1000 -dname "CN=*.${NEXUS_DOMAIN}, OU=test, O=test1, L=Unspecified, ST=Unspecified, C=RU" -ext "SAN=DNS:nexus-repo.com,IP:166.1.227.189" -ext "BC=ca:true" Replace the following values with your own: -keystore keystore.jks — Name of the file where the key will be stored, using the .jks format. -storepass test12345 — Password for accessing the key store. -keypass test12345 — Password for accessing the private key. -ext "SAN=DNS:nexus-repo.com,IP:166.1.227.189" — Specifies your Nexus server's domain name and IP address. If a local domain is used, it must be added to the /etc/hosts file (for Linux) or C:\Windows\System32\drivers\etc\hosts in Windows. Next, extract the server certificate from the generated keystore.jks file using the following command: sudo keytool -export -alias jetty -keystore keystore.jks -rfc -file nexus.cert The output will be a certificate file named nexus.cert. Now, edit the Nexus configuration file nexus-default.properties located in /opt/nexus/etc: sudo nano /opt/nexus/etc/nexus-default.properties Find the section with the comment # Jetty section, and add the following parameter: application-port-ssl=8443 This specifies the port where HTTPS will be available. In the same section, add this line: nexus-args=${jetty.etc}/jetty.xml,${jetty.etc}/jetty-http.xml,${jetty.etc}/jetty-https.xml,${jetty.etc}/jetty-requestlog.xml Next, edit the jetty-https.xml file located in /opt/nexus/etc/jetty: sudo nano /opt/nexus/etc/jetty/jetty-https.xml Locate the block named sslContextFactory. In the fields KeyStorePassword, KeyManagerPassword, TrustStorePassword, enter the password used during certificate generation. In this example, the password is test12345. In the parameters KeyStorePath and TrustStorePath, specify the name of the generated certificate. After making these changes, restart the Nexus service: sudo systemctl restart nexus Installing the Certificate on Linux In Linux, we must install the certificate at the OS level. Otherwise, when trying to authenticate to the repository using the docker login command, the following error may occur: x509: certificate signed by unknown authority To install the certificate on Ubuntu/Debian, follow these steps: Install the ca-certificates package: sudo apt -y install ca-certificates The certificate must be in .crt format, as other formats are not supported. Since the certificate was generated as .cert, rename it to .crt: sudo mv nexus.cert nexus.crt Copy the certificate to /usr/local/share/ca-certificates: sudo cp nexus.crt /usr/local/share/ca-certificates Install the certificate using the following command: sudo update-ca-certificates Configuring HTTPS in the Nexus Repository To configure HTTPS in the repository: Open the Nexus web interface and log in as an administrator. Navigate to the Server Administration and Configuration section (gear icon). In the left menu, select Repositories, find the required repository, check the box next to HTTPS, and specify a port that is not already in use on the server, such as 8344. 4 Save the changes. On the server, run the docker login command, specifying the repository address and HTTPS port: docker login nexus-repo.com:8344 You can log in using the admin account. Pushing an Image to the Repository To test pushing an image, let's use nginx: Assign a tag to the image. The format for Docker image tags is as follows: image:tag registry_address:repository_port/image_name Example: docker tag nginx:latest nexus-repo.com:8344/nginx-test Verify that the new image exists: docker images Push the image to the repository: docker push nexus-repo.com:8344/nginx-test Open the Nexus web interface, navigate to the repository, and confirm that the image was successfully uploaded. Conclusion Nexus Repository is an excellent solution for storing and managing artifacts. Supporting a wide range of artifact formats, it is suitable for both small development teams and larger enterprises.
11 March 2025 · 8 min to read
Docker

How To Install and Use Docker Compose on Ubuntu

Docker Compose has fundamentally changed how developers approach containerized applications, particularly when coordinating services that depend on one another. This tool replaces manual container management with a structured YAML-driven workflow, enabling teams to define entire application architectures in a single configuration file.  For Ubuntu environments, this translates to reproducible deployments, simplified scaling, and reduced operational overhead. This guide provides a fresh perspective on Docker Compose installation and usage, offering deeper insights into its practical implementation. Prerequisites Before you begin this tutorial, you'll need a few things in place: Deploy an Ubuntu cloud server instance on Hostman. Ensure you have a user account with sudo privileges or root access. This allows you to install packages and manage Docker. Install Docker and have it running on your server, as Docker Compose works on top of Docker Engine. Why Docker Compose Matters Modern applications often involve interconnected components like APIs, databases, and caching layers. Managing these elements individually with Docker commands becomes cumbersome as complexity grows. Docker Compose addresses this by allowing developers to declare all services, networks, and storage requirements in a docker-compose.yml file. This approach ensures consistency across environments—whether you’re working on a local Ubuntu machine or a cloud server. For example, consider a web application comprising a Node.js backend, PostgreSQL database, and Redis cache. Without Docker Compose, each component requires separate docker run commands with precise networking flags. With Compose, these relationships are organized once, enabling one-command setups and teardowns. Docker Compose Installation Follow these steps to install Docker Compose on your Ubuntu machine: Step 1: Verify that the Docker Engine is Installed and Running Docker Compose functions as an extension of Docker, so verify its status with: sudo systemctl status docker Example output: ● docker.service - Docker Application Container Engine Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled) Active: active (running) since Thu 2025-02-20 08:55:04 GMT; 5min ago TriggeredBy: ● docker.socket Docs: https://docs.docker.com Main PID: 2246435 (dockerd) Tasks: 9 Memory: 53.7M CPU: 304ms CGroup: /system.slice/docker.service └─2246435 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock If inactive, start it using sudo systemctl start docker. Step 2: Update System Packages Refresh your package lists to ensure access to the latest software versions: sudo apt-get update You will see: Hit:1 https://download.docker.com/linux/ubuntu jammy InRelease Hit:2 http://archive.ubuntu.com/ubuntu jammy InRelease Hit:4 http://security.ubuntu.com/ubuntu jammy-security InRelease Hit:5 http://repo.hostman.com/ubuntu focal InRelease Hit:6 http://archive.ubuntu.com/ubuntu jammy-updates InRelease Hit:7 http://archive.ubuntu.com/ubuntu jammy-backports InRelease Hit:3 https://prod-cdn.packages.k8s.io/repositories/isv:/kubernetes:/core:/stable:/v1.31/deb InRelease Hit:8 https://packages.redis.io/deb jammy InRelease Reading package lists... Done Step 3: Install Foundational Utilities Secure communication with Docker’s repositories requires these packages: sudo apt-get install ca-certificates curl  Step 4: Configure Docker’s GPG Key Authenticate Docker packages by adding their cryptographic key: sudo install -m 0755 -d /etc/apt/keyringssudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.ascsudo chmod a+r /etc/apt/keyrings/docker.asc This step ensures packages haven’t been altered during transit. Step 5: Integrate Docker’s Repository Add the repository tailored to your Ubuntu version: echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null The command auto-detects your OS version using VERSION_CODENAME. Step 6: Install the Docker Compose Plugin Update repositories and install the Compose extension: sudo apt updatesudo apt-get install docker-compose-plugin Step 7: Validate the Installation Confirm successful setup with: docker compose version The output displays the Docker Compose version: Docker Compose version v2.33.0 Building a Practical Docker Compose Project Let’s deploy a web server using Nginx to demonstrate Docker Compose’s capabilities. Step 1. Initialize the Project Directory Create a dedicated workspace: mkdir ~/compose-demo && cd ~/compose-demo Step 2. Define Services in docker-compose.yml Create the configuration file: nano docker-compose.yml Insert the following content: services: web: image: nginx:alpine ports: - "8080:80" volumes: - ./app:/usr/share/nginx/html In the above YAML file: services: Root element declaring containers. web: Custom service name. image: Uses the Alpine-based Nginx image for reduced footprint. ports: Maps host port 8080 to container port 80. volumes: Syncs the local app directory with the container’s web root. Step 3. Create Web Content Build the HTML structure: mkdir app nano app/index.html Add this HTML snippet: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Docker Compose Test</title> </head> <body> <h1>Hello from Docker Compose!</h1> </body> </html> Orchestrating Containers: From Launch to Shutdown Let’s explore how you can use Docker Compose for container orchestration: Start Services in Detached Mode Launch containers in the background: docker compose up -d Example output: [+] Running 2/2 ✔ Network compose-demo_default Created ✔ Container compose-demo-web-1 Started Docker Compose automatically pulls the Nginx image if missing and configures networking. Verify Container Status Check operational containers: docker compose ps -a Access the Web Application Visit http://localhost:8080 locally or http://<SERVER_IP>:8080 on remote servers. The test page should display your HTML content. Diagnose Issues via Logs If the page doesn’t load or if you encounter any issues, you can inspect container logs: docker compose logs web Example output: web-1 | /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration web-1 | /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/ web-1 | /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh web-1 | 10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf web-1 | 10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf web-1 | /docker-entrypoint.sh: Sourcing /docker-entrypoint.d/15-local-resolvers.envsh … Graceful Shutdown and Cleanup Stop containers temporarily: docker compose stop Example output: [+] Stopping 1/1 ✔ Container compose-demo-web-1  Stopped Remove all project resources: docker compose down Example output: [+] Running 2/2 ✔ Container compose-demo-web-1  Removed ✔ Network compose-demo_default  Removed Command Reference: Beyond Basic Operations While the workflow above covers fundamentals, these commands enhance container management: docker compose up --build: Rebuild images before starting containers. docker compose pause: Freeze containers without terminating them. docker compose top: Display running processes in containers. docker compose config: Validate and view the compiled configuration. docker compose exec: Execute commands in running containers (e.g., docker compose exec web nginx -t tests Nginx’s configuration). Conclusion Docker Compose transforms multi-container orchestration from a manual chore into a streamlined, repeatable process. By adhering to the steps outlined—installing Docker Compose, defining services in YAML, and leveraging essential commands—you can manage complex applications with confidence.
26 February 2025 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support