Sign In
Sign In

Configuring External Docker Registries

Configuring External Docker Registries
Hostman Team
Technical writer
Docker
26.09.2024
Reading time: 4 min

When working with Docker, users deal with images which are executable files that contain everything needed to run an application, including the app's source code, libraries, etc. These images are stored in specialized repositories known as registries, which can be either private or public.

The most well-known public registry is Docker Hub, where you can find many official images like Nginx, PostgreSQL, Alpine, Ubuntu, Node, and MongoDB. Users can register on Docker Hub and store their images, with access to three private repositories and one public repository by default. Docker Hub is the default registry used by Docker to pull images.

This guide will cover changing Docker's default registry to another one.

Using External Docker Registries

A simple way to use external registries is to leverage third-party registries offered by companies like Google and Amazon. Below is a list of public registries you can use:

Using unknown external Docker registries may pose security risks, so proceed with caution.

Follow the steps below to switch the default Docker Hub registry to another one.

Linux Configuration

Open the daemon.json file using any text editor. If Docker is installed normally (not in rootless mode), the file is located in /etc/docker. If the file doesn’t exist, the command will create it:

nano /etc/docker/daemon.json

For Docker in rootless mode, the file is located at ~/.config/docker in the user's home directory. Again, the command will create the file if it doesn't exist:

nano ~/.config/docker/daemon.json

Add the following parameter to set a new default registry (https://mirror.gcr.io in this example):

{
 "registry-mirrors": ["https://mirror.gcr.io"]
}

Save and exit the file.

Restart the Docker service to apply the changes:

systemctl reload docker

Now, when you pull an image, Docker will use the newly specified registry. For example, pull the Alpine image from Google's registry:

docker pull mirror.gcr.io/alpine

You can also specify a tag. For instance, pull Nginx version 1.25.2:

docker pull mirror.gcr.io/nginx:1.25.2

Windows Configuration (Docker Desktop)

Open the daemon.json file located at:

C:\Users\<your_username>\.docker\daemon.json

Add the registry-mirrors parameter:

{
 "registry-mirrors": ["https://mirror.gcr.io"]
}

Save the file, then restart Docker. Right-click the Docker icon in the system tray and select "Restart."

Alternatively, you can configure the registry via Docker Desktop’s UI. Go to the Docker Engine section and add:

{
 "registry-mirrors": ["https://mirror.gcr.io"]
}

Click Apply & Restart to save the changes and restart Docker.

After restarting, Docker will use the new registry for image pulls. For example, download a curl image:

docker pull mirror.gcr.io/curlimages/curl

To pull a specific version, specify the tag. For example:

docker pull mirror.gcr.io/node:21-alpine

Using Nexus as a Docker Registry

You can also use Nexus to manage Docker images. Nexus supports proxy repositories, which cache images pulled from external registries like Docker Hub. This allows Nexus to act as a caching proxy repository for Docker images, which can be useful if external registries are unavailable.

Setting up a Proxy Repository in Nexus

  1. Log in to Nexus using an administrator or a user with repository creation rights.

  2. Go to Server Administration and Configuration and navigate to Repositories. Click Create repository and choose the docker (proxy) type.

  3. Fill out the necessary fields:

    • Name: Give the repository a unique name.

    • Online: Ensure this checkbox is checked, allowing the repository to accept incoming requests.

  4. If Nexus is behind a proxy server (such as Nginx), you won’t need to use ports for authentication. If no proxy is used, assign a unique port for HTTP or HTTPS.

    • Allow anonymous docker pull: If checked, you won’t need to authenticate using docker login. If not checked, you’ll need to log in before pulling images.

    • Remote storage: Specify the URL of the external registry (e.g., https://registry-1.docker.io for Docker Hub).

After the repository is created, log in to the Nexus registry (if authentication is required) using:

docker login <nexus_registry_address>

To pull an image, use the following format:

docker pull <nexus_registry_address>/image_name:tag

For example, to pull a Python image with tag 3.8.19-alpine:

docker pull nexus-repo.com/python:3.8.19-alpine

Avoid using the latest tag for security reasons, as it may contain bugs or vulnerabilities.

Conclusion

This article reviewed several methods for pulling and storing Docker images. Using third-party Docker registries can be helpful when the default registry is unavailable. If you don’t trust external registries, you can always set up your own private or public registry.

Docker
26.09.2024
Reading time: 4 min

Similar

Docker

Running Selenium with Chrome in Docker

Sometimes, it’s useful to work with Selenium in Python within a Docker container. This raises questions about the benefits of using such tools, version compatibility between ChromeDriver and Chromium, and the nuances of their implementation. In this article, we’ll cover key considerations and provide solutions to common issues. Why Run Selenium in Docker? Running Selenium in a container offers several advantages: Portability: Easily transfer the environment between different machines, avoiding version conflicts and OS-specific dependencies. Isolation: The Selenium container can be quickly replaced or updated without affecting other components on the server. CI/CD Compatibility: Dockerized Selenium fits well into CI/CD pipelines — you can spin up a clean test environment from scratch each time your system needs testing. Preparing an Ubuntu Server for Selenium with Docker First, make sure Docker and Docker Compose are installed on the server: docker --version && docker compose version In some Docker Compose versions, the command is docker-compose instead of docker compose. If the tools are installed, you’ll see output confirming their versions. If not, follow this guide. Selenium in Docker Example When deploying Selenium in Docker containers, consider the host architecture, functional requirements, and performance. Official selenium/standalone-* images are designed for AMD64 (x86_64) CPUs, while seleniarm/standalone-* images are adapted for ARM architectures (e.g., Apple silicon or ARM64 server CPUs). First, create a docker-compose.yml file in your project root. It will contain two services: version: "3" services: app: build: . restart: always volumes: - .:/app depends_on: - selenium platform: linux/amd64 selenium: image: selenium/standalone-chromium:latest # For AMD64 # image: seleniarm/standalone-chromium:latest # For ARM64 container_name: selenium-container restart: unless-stopped shm_size: 2g ports: - "4444:4444" # Selenium WebDriver API - "7900:7900" # VNC Viewer environment: - SE_NODE_MAX_SESSIONS=1 - SE_NODE_OVERRIDE_MAX_SESSIONS=true - SE_NODE_SESSION_TIMEOUT=300 - SE_NODE_GRID_URL=http://localhost:4444 - SE_NODE_DETECT_DRIVERS=false You must choose the correct image for your system architecture by uncommenting the appropriate line. The app service will run your main Python code. Let’s define a standard Dockerfile for this service: # Use a minimal Python image FROM python:3.11-slim # Set working directory WORKDIR /app # Install Python dependencies COPY requirements.txt /app/ RUN pip install --no-cache-dir -r requirements.txt # Copy project files COPY . /app/ # Set environment variables (Chromium is in a separate container) ENV SELENIUM_REMOTE_URL="http://selenium:4444/wd/hub" # Run Python script CMD ["python", "main.py"] This Dockerfile uses a base Python image and automatically installs the necessary dependencies. Now let’s add the driver initialization script to main.py: import time # Used to create a delay for checking browser functionality import os from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options # WebDriver settings chrome_options = Options() chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") chrome_options.add_argument("--disable-gpu") chrome_options.add_argument("--disable-webrtc") chrome_options.add_argument("--hide-scrollbars") chrome_options.add_argument("--disable-notifications") chrome_options.add_argument("--start-maximized") SELENIUM_REMOTE_URL = os.getenv("SELENIUM_REMOTE_URL", "http://selenium:4444/wd/hub") driver = webdriver.Remote( command_executor=SELENIUM_REMOTE_URL, options=chrome_options ) # Open a test page driver.get("https://www.timeweb.cloud") time.sleep(9999) # Shut down WebDriver driver.quit() In the requirements.txt file, list standard dependencies, including Selenium: attrs==25.1.0 certifi==2025.1.31 h11==0.14.0 idna==3.10 outcome==1.3.0.post0 PySocks==1.7.1 selenium==4.28.1 sniffio==1.3.1 sortedcontainers==2.4.0 trio==0.28.0 trio-websocket==0.11.1 typing_extensions==4.12.2 urllib3==2.3.0 websocket-client==1.8.0 wsproto==1.2.0 Now you can launch the containers: docker compose up -d Expected output: Docker will build and launch the containers. To verify everything is running correctly: docker compose ps You should see two running containers which means everything was loaded successfully. You can now integrate a script in main.py to interact with any site. Debugging Selenium in Docker with VNC In official Selenium Docker images (like seleniarm/standalone-chromium, selenium/standalone-chrome, etc.), direct access to the Chrome DevTools Protocol is usually overridden by Selenium Grid. It generates a new port for each session and proxies it via WebSocket. Arguments like --remote-debugging-port=9229 are ignored or overwritten by Selenium, making direct browser port access impossible from outside the container. Instead, these Docker images offer built-in VNC (Virtual Network Computing), similar to TeamViewer or AnyDesk, but working differently. VNC requires headless mode to be disabled, since it transmits the actual screen content — and if the screen is blank, there will be nothing to see. You can connect to the VNC web interface at: http://<server_ip>:7900 When connecting, you'll be asked for a password. To generate one, connect to the selenium-container via terminal: docker exec -it selenium-container bash Then enter: x11vnc -storepasswd You’ll be prompted to enter and confirm a password interactively. Enter the created password into the VNC web interface, and you’ll gain access to the browser controlled by Selenium inside Docker. From there, you can open DevTools to inspect DOM elements or debug network requests. Conclusion Running Selenium in Docker containers simplifies environment portability and reduces the risk of version conflicts between tools. It also allows visual debugging of tests via VNC, if needed. Just make sure to choose the correct image for your system architecture and disable headless mode when a graphical interface is required. This provides a more flexible and convenient infrastructure for testing and accelerates Selenium integration into CI/CD pipelines.
19 June 2025 · 5 min to read
Docker

Building Docker Images and Deploying Applications

Containerizing applications offers a convenient and flexible way to quickly deploy software, including web servers, databases, monitoring systems, and others. Containers are also widely used in microservices architectures. Docker is ideal for these purposes, as it greatly simplifies working with containerized apps. Introduced in 2013, Docker has seen continuous support and usage ever since. In this tutorial, you’ll learn how to create Docker images for three different applications written in different programming languages and how to run Docker containers from these images. Prerequisites To work with the Docker platform, you’ll need: A VPS or virtual machine with any Linux distribution preinstalled. In this tutorial, we use Ubuntu 22.04. Docker installed. You can find the Docker installation guide for Ubuntu 22.04 in our tutorials. Alternatively, you can use a prebuilt cloud server image with Docker — just select it in the “Marketplace” tab when creating a server. What Is a Docker Image? At the core of Docker’s concept is the image. A Docker image is a template—an executable file—you can use to start a Docker container. It contains everything needed to launch a ready-to-run application: source code, configuration files, third-party software, utilities, and libraries. Docker image architecture is layer-based. Each layer represents an action performed during the image build process, such as creating files and directories or installing software. Docker uses the OverlayFS file system, which merges multiple mount points into one, resulting in a unified directory structure. You can move Docker images between systems and use them in multiple locations, much like .exe executables in Windows systems. Creating Custom Docker Images Let’s walk through how to create Docker images for Flask, Node.js, and Go applications. Creating a Docker Image for a Flask Application To create images, a Dockerfile is used. Dockerfile is a plain text file without an extension that defines the steps to build a container image. You can find more details about Dockerfile instructions in the official documentation. We’ll create a Docker image with a web application built with Flask and run the container. The application will show a basic HTML page that displays the current date. 1. Install Required Packages Install the pip package manager and python3-venv for managing virtual environments: apt -y install python3-pip python3-venv 2. Create the Project Directory mkdir dockerfile-flask && cd dockerfile-flask 3. Create and Activate a Virtual Environment python -m venv env source env/bin/activate After activation, you'll see (env) in your prompt, indicating the virtual environment is active. Packages installed via pip will now only affect this environment. 4. Install Flask and Dependencies pip install flask pip install MarkupSafe==2.1.5 5. Create the Flask Application Create a file named app.py that will store the source code of our application: from flask import Flask import datetime app = Flask(__name__) @app.route('/') def display_current_date(): current_date = datetime.datetime.now().date() return f"Current date is: {current_date}" if __name__ == '__main__': app.run(debug=True) 6. Run and Test the Application flask run --host=0.0.0.0 --port=80 In your browser, visit your server’s IP address (port 80 doesn’t need to be specified as it’s the default one). You should see today’s date. 7. Freeze Dependencies Now, we need to save all the dependencies (just the flask package in our case) to a requirements.txt file, which stores all packages used in the project and installed via pip. pip freeze > requirements.txt Your project structure should now look like this: dockerfile-flask/ ├── app.py ├── env/ ├── requirements.txt Now we can proceed to creating a Docker image. 8. Create the Dockerfile Create a file named Dockerfile with the following contents: FROM python:3.8-slim-buster WORKDIR /app COPY requirements.txt requirements.txt RUN pip3 install -r requirements.txt COPY . . CMD [ "python3", "-m", "flask", "run", "--host=0.0.0.0", "--port=80" ] Explanation: FROM python:3.8-slim-buster: Use Python 3.8 base image on a lightweight Debian Buster base. WORKDIR /app: Set the working directory inside the container (similar to the mkdir command in Linux systems) COPY requirements.txt requirements.txt: Copy the dependency list into the image. RUN pip3 install -r requirements.txt: The RUN directive runs the commands in the image. In this case, it’s used to install dependencies. COPY . .: Copy all project files into the container. CMD [...]: CMD defines the commands and app parameters to be used when the container starts. 9. Use a .dockerignore File Create a .dockerignore file to exclude unnecessary directories. It helps to decrease the image size. In our case, we have two directories that we don’t need to launch the app. Add them to the .dockerignore file: env __pycache__ 10. Build the Docker Image When building the image, we need to use a tag that would work as an identifier for the image. We’ll use the flask-app:01 tag. docker build -t flask-app:01 . The dot at the end means the Dockerfile is located in the same directory where we run the command. Check the created image: docker images 11. Run the Docker Container docker run -d -p 80:80 flask-app:01 -d: Run the container in the background. -p: Forward host port 80 to container port 80. Check running containers: docker ps The STATUS column should show “Up”.  Open your browser and navigate to your server's IP address to view the app. Creating a Docker Image for a Node.js Application Our simple Node.js app will display the message: “This app was created using Node.js!” Make sure you have Node.js installed on your system. 1. Create the Project Directory mkdir dockerfile-nodejs && cd dockerfile-nodejs 2. Initialize the Project npm init --yes 3. Install Express npm install express --save 4. Create the Application File Create app.js with the following code: const express = require("express"); const app = express(); app.get("/", function(req, res) { return res.send("This app was created using Node.js!"); }); app.listen(3000, '0.0.0.0', function(){ console.log('Listening on port 3000'); }); 5. Test the Application node app.js Open http://<your-server-ip>:3000 in a browser to verify it works. 6. Create the Dockerfile FROM node:20 WORKDIR /app COPY package.json /app RUN npm install COPY . /app CMD ["node", "app.js"] 7. Add .dockerignore Create .dockerignore and the following line: **/node_modules/ 8. Build the Image docker build -t nodejs-app:01 . 9. Start the Container from Image docker run -d -p 80:3000 nodejs-app:01 Visit http://<your-server-ip> in your browser. The app should be running. Creating a Docker Image for a Go Application This Go application will display: “Hello from GO!” Make sure you have Go installed in your system. 1. Create the Project Directory mkdir dockerfile-go && cd dockerfile-go 2. Initialize the Go Module go mod init go-test-app 3. Create the Application File Create main.go with this code of our application: package main import "fmt" func main() { fmt.Println("Hello from GO!") } Verify it works: go run . 4. Create the Dockerfile FROM golang:1.23-alpine WORKDIR /app COPY go.mod ./ RUN go mod download COPY *.go ./ RUN go build -o /go-test CMD [ "/go-test" ] COPY go.mod ./: Adds dependencies file. RUN go mod download: Installs dependencies. COPY *.go ./: Adds source code. RUN go build -o /go-test: Compiles the binary. 5. Build the Image docker build -t go:01 . 6. Run the Container docker run go:01 You should see the output: Hello from GO! Conclusion In this guide, we walked through building custom Docker images for three applications written in different programming languages. Docker allows you to package any application and deploy it with ease.
18 June 2025 · 7 min to read
Docker

How to Install Docker on MacOS

Docker is a platform that makes it easier to create, deploy, and operate applications in containers. Containers enable developers to bundle an application's dependencies, including as libraries, frameworks, and runtime environments, and ship it as a single package. This ensures that the program runs reliably and consistently, independent of the environment in which it is deployed. If you have troubles with that, here's our instruction how to deploy server with Docker. Docker allows you to automate the deployment of software inside lightweight, portable containers. These containers may operate on any system with Docker installed, making it simple to deploy apps across several settings, such as a developer's laptop, a testing server, or a production environment on the cloud. Docker also includes tools for managing and orchestrating containers at scale, making it simpler to deploy, scale, and manage complex applications in production environments. Below are the requirements to prepare for the installation of docker on MacOS:  A supported version of MacOS. Docker Desktop is compatible with the latest macOS versions. This includes the current macOS release as well as the two previous releases. As new major versions of macOS become widely available, Docker stops supporting the oldest version and instead supports the most recent version (along with the prior two). RAM: minimum of 4 GB. This is to optimize Docker performance especially when operating multiple containers.  In installing docker, you can either install it interactively or manually or via the command line interface. Here’s the guide on how to do the installation with both methods. Manual Installation Download the installer from the official docker website using the following links: Apple Silicon processor Intel chip processor Install Docker Desktop by double-clicking the Docker.dmg:  And drag and drop it to the Application folder. By default, the Docker Desktop is installed at /Applications/Docker. Wait for the copying to finish. Double-click the Docker from the Applications folder to proceed with the installation. Click Accept to continue in the Docker Subscription Service Agreement page. From the installation window, choose either: Use recommended settings (Requires password) Use advanced settings Click Finish.  Verify if installation is successful. A Docker icon should appear on the menu bar when the Docker Desktop is installed and running. A notification will appear stating that Docker is running. Install using Command Line Interface Once Docker.dmg is downloaded from the official docker website, login as a super user / root in a terminal to install Docker Desktop in the Application folder. Execute the below commands respectively.  hdiutil attach Docker.dmg /Volumes/Docker/Docker.app/Contents/MacOS/install hdiutil detach /Volumes/Docker If running as a normal user, execute the command with sudo: sudo hdiutil attach Docker.dmg sudo /Volumes/Docker/Docker.app/Contents/MacOS/install sudo hdiutil detach /Volumes/Docker Installation might take some time to complete since the system may do various security checks while installing Docker on Mac. Troubleshooting Some of the common issues that the user might encounter during the installation of MacOS are:  Users may not check the MacOs version of their machine. Take note of the system requirements when installing Docker on MacOS to avoid installation failure and unexpected behavior (like docker image becomes corrupted). Errors during the installation process may occur such as failed downloads, incomplete installation, etc. Go back and check the system and hardware compatibility of the machine.  Conflict with existing software. This requires troubleshooting and investigating system logs. Usually, this can be solved by removing the problematic software.  Permission and security issues. When installing Docker on MacOS, ensure that the machine has all the required permission to access system resources, like directory, network, etc.  Conclusion To summarize, installing Docker on MacOS provides various opportunities for both developers and system administrators. Docker technology provides resources with an enhanced development workflow, an efficient procedure for delivering apps, and consistent system environments. Embrace containerization to broaden your development horizons. Check what Hostman VPS Servers can give you.
30 April 2025 · 4 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support