Sign In
Sign In

What is a VPS? 4 Tips on How to Choose the Best VPS

What is a VPS? 4 Tips on How to Choose the Best VPS
Hostman Team
Technical writer
Infrastructure

What is VPS? Why do developers around the world use it? Why should you use it? How to choose the best one?

In this article, we will answer all the questions diving deep into every topic.

What does VPS stand for?

This abbreviation could be deciphered as "Virtual private server". Or "Virtual dedicated server" in some cases.

The term itself brings the description of the technology it relates to, actually. Here we are talking about a server — a platform where webmasters and developers store their project’s data or test different ideas (it includes website’s documents, applications’ media, etc.). But this server is not real. It is a virtualized copy of it that works as a fully-fledged PC but uses hardware of another device as its own. VPS can be used to create many such computers that can be simulated using only one physical machine.

B0a2e8467251795ec9e8b476ea3b3505

Why is it "virtual" and "private"?

It is "virtual" because it exists in the hypervisor — a special application that is installed on a PC and can be used as a full-featured emulator of "real" computers. This emulator takes part of tangible hardware and shares it with an artificial PC using complex virtualization technologies. After that procedure is established the server "looks" like a familiar workspace for developers and webmasters renting it.

It is private because in most cases this kind of server is given full control to the administrator renting it. The whole dedicated infrastructure is controlled by one team and they don’t have to share any resources or data with other users that pay for service of the same hosting.

What is the difference between VPS and VDS?

Let’s talk about virtual dedicated servers a bit more. Sometimes, both abbreviations are used together. Like VDS/VPS. Because they mean the same thing as a product. VPS and VDS are virtual servers that are given full control to one administrator or his team.

But the difference exists and it lies in the technological implementation of virtual servers. VPS is associated with OpenVZ virtualization technology and VDS — with KVM.

D6354132d9106893fcab6437b659eddc

But it is important to understand that this designation is very arbitrary. A lot of developers and webmasters use both terms interchangeably.

What is VPS and how does it work?

In general, VPS is a virtual machine that is installed on some PC that can be remotely controlled via a special application or command-line utility.

VPS is a quite cheap way to get your own server without confusing and disturbing functional limitations like in the case of virtual hosting. It costs less because the provider has to buy one physical machine and implement many virtual servers on it instead of buying a PC for every potential webmaster or developer.

And at the same time, VPS is not really limited in its capabilities. It is almost the same in terms of functionality as its counterpart — a dedicated server.

What are VPS's used for?

So, what exactly you can do with VPS and why they’re so necessary for developers and system administrators:

  1. It is used to create informational web platforms, online stores, and various kinds of commercial web applications.

  2. To store any personal data without go-between services like Dropbox or Google Drive.

  3. To develop and test fully functional lightweight applications or MVPs.

  4. To deploy chunky and complex software platforms like Odoo, 1C Bitrix, etc.

  5. To create personal gaming servers (to make money on it) or mail servers (to anonymize correspondence).

  6. To launch and maintain CCTV systems to store a large number of recordings.

There are other use cases for VPS’ but these listed above are the most relevant.

Advantages and disadvantages of VPS

Speaking of benefits, we must pinpoint things like cheapness, independence, less responsibility, good technical equipment. VPS usually costs less than physical servers and at the same time gives capabilities on par with real computers. In most cases, VPS represents an isolated software platform that is accessible by you and your team members. Even the host can’t get inside it and somehow interact with your virtual PC.

Unfortunately, there are a few drawbacks. The performance of VPS will never be as high as the performance of a real computer. Hypervisor and virtualization technologies will be a bottleneck that blocks it from achieving all the potential of used hardware. Further, it is not possible to have any impact on the physical state of the rented PC. Hardware installed in it is installed by the host. You’d never be allowed to change something inside the machine.

Two types of VPS

As we mentioned earlier, there are two virtualization technologies used to create VPS/VDS servers. OpenVZ and KVM. What kind of VPS should you choose? Let’s break them down:

OpenVZ

  • The amount of resources available for your personal service is dynamically changing. If your web project is in heavy usage, the amount of available resources will grow respectively.

  • It is possible to change any characteristics of your PC at any moment without reloading the operating system. Just pay a bit more if you want a more powerful artificial computer.

  • It is possible to lose some amount of performance because other users are accessing the host with you in parallel. So, you’re not independent. Moreover, your data is visible to the host.

  • You can install only Linux OSes to the OpenVZ server because it is based on the Linux kernel.

67f3c25a8884f857de8779392fa9dc97

KVM

  • The volume of hardware resources is static. It is closer to a real PC than in the case with OpenVZ.

  • You can change CPU and RAM but it is necessary to relaunch a server so changes take their place.

  • You’re fully independent. Nobody can access your data, not even host administrators.

  • You can decide by yourself what operating system to install. Even if you choose Windows or macOS.

4e581613104d2631a0487066b57bb8fd

As you can see, VPS is a much more flexible variant but KVM is more reliable and works as a real PC.

VPS hostings in a nutshell

A hosting provider (also called "host") is a business that creates VPSes and sells access to them to developers and webmasters. The host creates data centers around the world and deploys different applications and websites on them.

Their main task is to make deploying as easy as possible for every user.

VPS in USA: hostings, prices

There are many hosting providers in the USA that are great at doing their job.

  • Bluehost — probably the cheapest VPS and quite a popular platform that gives its users unmetered bandwidth. It also gives users an opportunity to easily migrate from old host to new. Renting a server at Bluehost you are getting a free domain and professional technical support 24/7. It costs about $3/month for the most basic plan.

  • Hostman — modernity is at the core of this service. It is not only amazingly reliable servers based on platforms like AWS, Azure, and Google Cloud. It is also the simplest interface to deploy any application, website, or database in a few clicks. And it is just from $5/month for a powerful platform for your projects.

  • Hostgator — the great multipurpose server that only costs around $4 per month. It gives unmetered disk space and bandwidth, a 45-days guarantee, and a large search credit.

  • DigitalOcean — a basic server at DO will cost you around $5 a month. What’s great about DO — its reliability. It is one of the most fast-growing hostings out there. Functional and modern.

  • AWS — one of the biggest platforms to deploy apps and websites. It is the platform created by Amazon and used by giants like Apple. One of the most functional and reliable. The price depends on the number of projects and their resource capacities.

Is there free VPS out there?

There are but they’re problematic. If your host offers you a free server it comes with many caveats for sure. Like:

  • Obligation to place an ad on your website.

  • Limit of resources.

  • No privacy. Nobody will bother about confidential data.

  • No security. Nobody will defend you from hackers and viruses.

  • Limited functionality.

We don’t recommend using free hosting because there’s no such thing as a free lunch. If you don’t pay for the product — you are the product. Your personal information, your files, your users.

How to choose VPS that fits your needs?

The decision strongly depends on what exactly you need to do with your VPS and what is your working environment. So you must answer some questions before renting the virtual server.

Choose an operating system

It is necessary to select an operating system, whether it will be Windows or some Linux distributive.

Linux is more flexible and lightweight. It is a great choice for small projects and backend systems like databases that are manipulated via command line without any needing for the graphical user interface. Furthermore, Linux is more resistant to hackers’ attacks and resource-intensive tasks.

Windows is an option for users that need to work with Microsoft’s services and products. For example, if your team relies on Teams (tautology intended), Office 365, and Outlook, you’d better consider VPS with Windows onboard. Moreover, it is a nice choice for those of you who want to deploy a remote operating system with a full-fledged graphical interface.

Rent appropriate "hardware"

It is a must to rent a server that is fully capable to deal with the job you’re going to delegate to it. Also, it is really important to pay for a bit more so your project won’t stop working because of exponential user base growth.

The one thing you should definitely consider before renting a server — finding one with SSD storage. It will guarantee delivering the data to users in a most efficient and quick way.

Choose the most effective datacenter

The performance of your websites and applications depends not only on used hardware but also on bandwidth. It is really important to choose a host that can ensure a fast and stable internet connection. Besides that, it would be great to see many data centers around the world so you can deploy your projects as close to your potential users as possible.

Moreover, the host must provide you with security measures like a screening system that blocks malware, security staff which is responsible for protecting servers from any physical impact or thefts. And also it should protect your applications and websites from DDoS attacks and any potential data loss.

Choose VPS that is suitable for the job you’re going to with it

Sometimes you have to choose a host based on more specific criteria. For example, you might need a server that is purposefully created to work with gaming servers. It has specific attributes like accents on more broad bandwidth and capability of fast deploying of gaming worlds. There is a good example of such a server called HostHavoc. It has a highly specialized interface and control panel that allows everyone to create their gaming world in a few clicks.

Some hosts provide amazing server capabilities for trading. Like VPS for Forex that gives you access to an instant executional platform to work with. Additionally, they usually can boast of a professional technical support team that has expertise in trading. So if you’re trying to find the best VPS host for Forex, you should find one with such a technical support team.

Also, we would recommend trying out multipurpose platforms like Hostman. It just asks you what you want to deploy and takes care of the rest. Using Hostman deploying applications, websites, databases, and other stuff is a breeze.

A few tips for those who are going to rent their first VPS

  • Don’t pick a plan with the biggest amount of storage at first. There’s a huge chance for you to overpay. You’d better calculate what SSD you need to launch your project and maintain it.

  • Better to overpay for security measures. If you don’t know how to defend yourself from DDoS attacks, pay someone who’d do this.

  • Don’t rent first found VPS over a long period. The best idea would be to use a testing period. Many hosts give one. For example, Hostman lets new users try out every function of the service for 7 days for free.

Summary

That’s it. VPS is an outstandingly useful tool. The only thing you need to do to make it even more effective is to choose the right one. Consider your priorities and needs while you are going through different hosts and VPSes. Don’t pay forward too much and prioritize not only your needs but users’ of yours. Try VPS by Hostman for 7 days for free to understand if it fits you.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support