Sign In
Sign In

What is a Service Level Agreement (or SLA)

What is a Service Level Agreement (or SLA)
Hostman Team
Technical writer
Infrastructure

SLA is an agreement that outlines what kind (and what level) of service a certain company can provide. This term is mostly used in industries like television or Information Technology.

Unlike regular service contracts Service Level Agreement offers an exceptional amount of detail provided with descriptions of service quality, tech support response time and other indicators.

General SLA principles

The service level agreement usually follows these principles:

  • The interaction between the provider and the client must be as transparent as possible. Every process has to have a clear and reasonable purpose. No blurred terms and puzzled wordings allowed. Both sides should avoid using specific expressions that might be misunderstood.

  • The rules and rights for both sides have to be totally understandable. For instance, a company promises that all the provided services will be accessible 99.99% of the time and if the user finds out that it is not true he should have an opportunity to receive compensation.

  • Expectations management. For example, clients expect tech support to be available at any time as well as answers to the most insignificant questions. But providers can't offer such service. Accordingly a client must change provider or lower his expectations. Or the company has to make the tech support team more performant.

SLA usually contains such data as the amount of time that is needed to resolve a client's problems or what kind of compensation and in what cases the user has the right to ask for it, etc.

SLA doesn't have to be a giant pile of sheets. The most important thing for any company is to make the service level agreement as transparent and natural as possible. Look at successful and large corporations such as Amazon. SLA for their service S3 is fully described on just one page.

Here (link to Amazon) you can read about the monthly uptime of the services and about the level of compensation you'll receive if they are not achieved.

What typical SLA consists of

We peeked into Amazon SLA a couple of lines ago. That is not a standard. It is just one of the ways to design your SLA which takes into consideration the specific characteristics of the service provided by the company (and authors of SLA).

If we're talking about the IT industry, a typical SLA would contain:

  • The rules for using the product or providing some service.

  • Responsibilities of both sides. Mechanisms that help users and providers to control each other in some way.

  • Concrete procedures that might be undertaken by the provider to fix any flaws the user stumbles upon.

You can also find the exactly how long an actual service level agreement will be legitimate. Sometimes both client and provider describe ways of adding new demands to the functionality of the services if necessary.

Moreover, it is normal to list indicators that somehow refer to the actual level of service quality.

  • The reliability and availability of the service.

  • The time it takes to react to system faults and malfunctions.

  • The time it takes to resolve system faults and malfunctions.

You might want to add the way of settling the scores with the client. As an example, some companies ask for money after providing a certain level of service, some companies insist on paying for a fixed plan, etc. Don't forget to tell users about fines if they exist. If it is possible for the client to receive compensation, the job of the service provider is to explain why, how and where the customer can get it.

Key parameters of SLA

The parameters of SLA — is a set of metrics that can be measured somehow. There's no way you would write in SLA something along the lines of "We will fix any fault before you know about it". It is an example of a blurred statement that will only make it harder to achieve a level of agreement between the service provider and the customer.

Let us talk about such a metric as operation mode. It shouldn't be abstract. It must include concrete dates and periods of time when customers can count on the technical support team.

There are examples when a company divides all the customers into separate groups. One of them is allowed to access tech support any time. The second is only allowed to ask for help on workdays. The third can't call for help at all.

Such metrics are extremely important because there's no other way to clearly understand what both sides can expect from their collaboration. That's why you have to consider a few things:

  • Metrics must be published and accessible for anyone.

  • There shouldn't be any statements that can be misunderstood.

  • Any changes in metrics should not happen without warning. Customers have the right to know about any change beforehand.

When you work on establishing metrics do not overdo it. It might increase the price of services provided by the company.

Let's see. We have a problem that might be solved in about 4 hours by a mediocre specialist. An expert can solve the same problem in 2 hours. It is not a good practice to write "2 hours" in your SLA. The job done by a specialist will become much more expensive in the quickest way possible. If you write "1 hour" you will not only pay much more but also will often pay compensations to thoughtful users who believed you but were cheated on.

Operation mode and work hours are not the only metrics that you should care about. What else is important? For example, the time it takes for tech support to respond. Metrics themselves can differ because of external variables like customer status or the seriousness of the problem.

Let's say some company is outsourcing some kind of IT service. This company has a group of users that pays for the premium plan and another group that does not. The time it takes for a tech support team to respond to clients from different groups might vary because one of them is obviously more privileged. One group might get help in 15 minutes and the other in a day. If there are such differences it is extremely important to reflect it in a service level agreement.

Beside the reaction time it is important to speak about the time it takes to resolve the problem the user has run into. The logic of regulating this metric is exactly the same. Even if the customer is really important to the company his queries might be dealt with at differing speeds depending on the seriousness of the problem.

We have a client that has an extremely severe problem — the local network is down and all the inner processes are consequently stuck. Such problems must be prioritized. SLA might include the details for this kind of problem and what type of help the client can expect.

The same customer can ask for help another day but with less critical malfunction. For example, the whole network works well but a few new devices need to be connected to it. It is ok to spend hours and days on such things.

These and a lot of other considerations should be reflected in SLA and accepted both by customer and service provider. Such an approach can help to lessen the amount of potential conflicts. Everything becomes clear and understandable for anyone.

Availability of the service

For the provider, one of the most important parameters in SLA is availability. This metric can be measured in days, hours or minutes for a certain period of time. For instance, a provider can guarantee anyone that its cloud storage will be accessible 99.99% of the time during the year.

In absolute numbers 99 and 100 seem to be quite the same thing. But the difference becomes huge if we analyze those numbers considering that this percentage refers to a period of 365 days. If we say 99% it actually means that the customers agree that the server might be not available for about 4 days per year. And when we talk about 100% there shouldn't be any stand by. But it is impossible to guarantee such reliability. It is always 99.**% with some numbers after the dot.

Considering Hostman, we guarantee 99,99% of uptime. It means that servers might not work for as long as 52 minutes per year.

You might find providers that promise uptime up to 99.9999% and swear that servers will be off for 15 minutes at most. But it's not a good idea to say such things for two important reasons:

  1. The higher the promised uptime the higher the price of the service.

  2. Not that many clients even need such uptime. In most cases 99.98% is more than enough.

The amount of 9s is less important than the actual time that is fixed in SLA. The year is the default period of time used as a metric in SLAs. That means that 99.95% of uptime is 4.5 hours of stand by per year.

But some providers might use different metrics. If there's no concrete info, the user must ask what period of time is used to evaluate the uptime. Some companies try to cheat customers and boast of 99.95% of uptime but mean results per month and not per year.

Another important point is cumulative accessibility. It is equal to the lowest indicator reflected in SLA.

Pros of SLA

Signing and observance of SLA pays off for both sides. Using SLA a company can protect itself from unexpected customer demands (like fixing a not critical problem at 3 AM) and strictly describe its own responsibilities.

There are other advantages of SLA. Providers can settle and put in order not only external processes but also inner ones. For example, with correctly composed SLA a company can implement different layers of technical support and control it in a more efficient manner.

At the same time, customers that sign an agreement will clearly understand what kind of service will be provided and how they can communicate with the company.

The difference between SLA and SLO

SLA can be used as an indication of user-satisfaction level. The highest level is 100% and the lowest is 0%.

Of course, it is impossible to achieve 100% as it is impossible to provide 100% uptime and reflect it in the company's SLA. That's why it is important to choose metrics wisely and be realistic enough about the numbers used in SLA.

If you don't have a team that is ready to work at night, don't promise your customers technical support that is available 24/7. Remember that it is possible to change SLA anytime in future when the team grows and it will be viable for the company to provide a more advanced level of support. Customers will be very happy about that.

There is another system that is used inside companies to monitor the service level. This one is called SLO. O stands for "objectives". It means that the metric is oriented at future company goals. This metric reflects what level of service the company wants to achieve in future.

Here we go again, examples based on tech support. Let's say, at the moment a company can process about 50 requests and work 5 days a week from 9 AM to 6 PM. This data should be fixed and described in SLA so the customers can see it.

At the same time a company creates a second document (service level objectives). It is a foundation of future service improvements. SLO contains current metrics and a list of tasks that should be done so the company achieves a new level of quality growth. For example, the aim to raise the amount of processed user requests from 50 to 75 during the day. The future of SLA strongly depends on a current SLO.

How to create SLA

Starting the process of SLA compiling you'd better begin with the describing part. Usually this part of SLA contains a kind of glossary, abstract system description, roles of users and tech support team, etc. In the same part you can reflect boundaries: territory where service is provided, time, functionality.

The next section — service description (what functions, features and goods a user can get by working with a certain company). In this part of SLA a company must describe in detail what the user can count on after signing the contract and on what terms.

After finishing the first part you can narrow and make further details more specific. That's the main part where the actual level of service is explained minutely. Here you would write about:

  • Metrics that reflect the quality of service provided (and they must be easy to measure).

  • The definition of every metric. That should be concrete numbers and not abstract statements so both sides can refer to this part of SLA.

It is common to put additional useful links (where another set of conditions explained in detail) in the last part of SLA.

In all the stages of preparing an SLA a company must remember that it is a regulation document that helps to control everything connected with the service. The more control a company has over all the processes the better. If SLA doesn't give a company some level of control, there's no reason for such a document to exist.

Checklist: what you should consider while compiling SLA

If you are not signing the SLA but creating your own and composing it to offer the potential clients, keep these things in mind:

  1. Customers. In large systems it is recommended to divide users into separate groups and communicate with every of them individually. This approach helps to distribute resources more effectively and do the job more effectively even in the moments of high loading.

  2. Services. At this stage it is important to consider what group of customers need certain types of services. For example, your company might offer access to a CRM system for every e-commerce business. If they can't access it their business will fail and the clients will start to lose money. And consequently it will lead them to the service provider who failed them. That's why such services get the highest importance rating and must be prioritized over some simple tasks like changing the printer or creating a new account.

  3. Parameters of service quality. These parameters should be connected with the business targets your company follows and the desires of the users. For example, time and conditions at which any service is provided. One company may want to work 24/7 and the other only offers access to a tech support team 5 days a week from 9 AM to 9 PM.

    Any changes to SLA should be explained to every user (regardless of his status or level of privilege) before the actual changes come into force.

    SLA is an ever-changing technology. In real use cases you will see that some parameters or aims do not correlate well with the general direction the business is taking. And that's why the management team often decides to correct SLA and optimize it.

    Remember, SLA is not a marketing tool, it is a way for the company to talk to its users in the clearest, most efficient way. Everyone accepts the rules in SLA.

Infrastructure

Similar

Infrastructure

Microservices Architecture: What It Is, Who It’s For, and Tools to Use

Every developer strives to speed up product development while maintaining enough flexibility and confident control over the process. Microservices application architecture helps solve these tasks and, over the past 10 years, has begun actively competing with the traditional monolithic approach. To begin, let’s look at the difference between them. Microservices Architecture vs. Monolith The difference between these two software development approaches is easiest to illustrate with an example. Let’s imagine two online stores: one implemented as a monolith and the other as microservices. A monolithic online store is a single, indivisible structure that combines all components: databases (catalog, customer data), shopping cart, order and payment forms. All of these elements are tightly interconnected and located on the same server. In a microservices system, each component is an independent module that developers can work on separately. And naturally, nothing requires hosting these modules on a single server. Thus, microservices architecture is a kind of constructor that allows you to add new elements painlessly as you scale the application. A monolith, on the other hand, can be compared to a solid wall: scaling here is only possible by adding another identical monolith. It’s worth adding that microservices are sometimes mistakenly perceived as a set of very small services. This is not the case: for example, the database of a large online store may contain millions of records and occupy tens of gigabytes, yet still be just one of the modules within the microservices architecture of the whole application. Comparing Microservices and Monoliths by Key Criteria Now let’s look at the main characteristics of microservices technology in comparison with a monolith and see how both approaches solve the same developer tasks. Release Cycles Development speed and frequency of updates increase with microservices thanks to modularity: changes are made not to the entire codebase but to individual modules. With a monolith, however, the whole platform must be updated first, which increases testing and debugging time. As a result, development slows down and updates are released less frequently. Technology Stack The microservices model offers significantly greater flexibility because each service can be written in its own programming language and may use different libraries and data-storage technologies. With a monolith, the situation is different: changing the technology stack is nearly impossible. Developers are forced to stick to the initial tools. Developer Onboarding Each module in a microservices architecture is self-contained, making it possible to bring in programmers who are familiar with the functionality of a specific service. This substantially lowers the onboarding threshold. With a monolith, new developers must dive into the code of the entire application, understand the functions of every block, and only then begin productive work. Thus, maintaining a monolith is more dependent on specific team members. Optimization Characteristics The modularity of microservices architecture also positively affects optimization, since developers can optimize each service separately. Optimizing a monolithic structure is more difficult because the team must account for links between indivisible blocks, and updating any one of them inevitably affects the entire application. Application Scalability The distributed structure of microservices and their ability to run on separate servers make scaling fast and easy. In monoliths, scaling one component inevitably requires scaling the entire application as a whole. Fault Tolerance Because services are hosted on different servers and have a modular structure, microservices architecture achieves independence of each module. This significantly increases system resilience: a failure in one service does not cause the entire application to fail. With a monolith, the situation is different: all components are tightly interconnected, so the failure of one module can make the entire application inoperable. Do I Need to Switch to Microservices Right Now? As we’ve seen, microservices have advantages in many key areas. But does this mean you need to abandon monoliths as an outdated approach and immediately switch to microservices? The answer depends on the current state of your project. And let’s say right away: rushing to adopt microservices is not always the right choice. Distributed architecture also has its drawbacks. First, microservices require ensuring network connectivity between modules. If a network connection is unstable, this leads to delays and data inconsistencies, which create potential problems in application behavior. Second, each module of a microservices system requires separate testing and health monitoring. Additionally, you will need to allocate cloud resources for each module, which may increase costs. Third, with the microservices approach, teams responsible for different modules may encounter interaction issues. This means you may need a connecting link in the form of DevOps specialists who can streamline collaboration and speed up development. All the factors listed above allow us to conclude that the transition to microservices must be timely. Usually, during the early stages of a project, this is unnecessary, especially if developers have limited human or financial resources. Switching to a microservices architecture makes sense when there is a clear need for significant scaling, and scaling a monolith has already become difficult. Microservices may be right for you if: You have a large team. In this case, it makes sense to divide the team into separate, independent groups, each responsible for its own service; You have a complex, branched application. In this case, it’s far more convenient to update and maintain modules separately than to rebalance the entire system each time; Your application traffic is highly variable. For example, you see sharp spikes in load during certain periods. Microservices' distributed structure allows quick scaling during peak loads, after which you can easily return to normal capacity levels; Your application is frequently updated. Working with separate modules in this scenario is much simpler, and new releases will be significantly faster. If your project meets at least one of these criteria, this is a reason to consider breaking it into independent elements. However, if your application is relatively small and does not require frequent updates, it is reasonable not to rush away from monolithic architecture. Useful Tools for Organizing Microservices A modern development approach requires a containerization platform. In most cases, developers use Docker for these purposes. Docker tools allow them to isolate the application from the infrastructure, meaning they can work with it equally well locally or in the cloud, which is very convenient for development. Once containers become numerous, an orchestrator becomes essential for managing and organizing groups of containers. Kubernetes is most commonly used as an orchestrator due to its strong compatibility with Docker. Another necessary tool is a load balancer, which ensures even distribution of network traffic across all cloud resources. This significantly increases the application’s fault tolerance.
21 November 2025 · 6 min to read
Infrastructure

Serverless Architecture: Overview of Serverless Computing

Serverless is one of the popular directions in IT and continues to grow. Cloud providers are ready to provide all the necessary infrastructure and maintain it, and the user pays only for the execution time of a function—idle time is not billed. Serverless Ecosystem Serverless architecture is a way of building applications in which the developer writes the application logic, while the cloud provider is responsible for launching that logic, monitoring, scaling, maintaining the execution environment, and managing load planning. This is not always an external provider; such infrastructure can also be implemented inside a company using its own computing resources. The simplification of working with infrastructure traces back to the appearance of the first IaaS (Infrastructure as a Service), where the provider simply offered virtual infrastructure for rent, and then extended to widespread BaaS (Backend as a Service), where a developer’s microservice or a database is simply several containers running in the provider’s environment, and in the case of a database, with preconfigured replication. Another product is FaaS (Function as a Service), where the execution unit is a single function. In part, this resembles a microservices approach. Your function should not rely on state between calls (it must be stateless), because each call is launched by the provider as a separate instance in a container. There are also some limitations imposed by the cloud platform: not all programming languages can be used to write function code (although the list is usually wide), and there are limits on execution time and memory usage. The exact limits differ by platform and may depend on your pricing plan. Many providers offer trial periods from three months to a year with limits on the number of requests. The foundation of Serverless is FaaS and the provider’s ecosystem of products. Typically, there are Databases, Authorization Services, API Gateways, Message Brokers (such as Kafka), all provided as services (BaaS) that your function can integrate with. Architecture Each provider may offer a unique set of services, but applications built on FaaS generally have similar architectures. As an example of integration between provider products, you can consider a TODO application (the example is taken from the AWS website). The application logic is packaged in lambda functions, which interact with the DynamoDB database, provided by AWS as a separate service. In front of the functions is the API Gateway, which handles incoming requests and routes them appropriately. The architecture also includes the Amplify Console for managing the web interface of the application and the Amazon Cognito authentication service. Advantages and Disadvantages The main positive aspects of Serverless typically include: Flexible scalability Helps handle peak loads and rapid product growth. The provider will automatically scale the function, and when demand decreases, resource consumption will shrink. Pricing You pay only for the execution time of the function. For example, on AWS, the price includes the cost of function invocations and the amount of memory (GB/s) allocated during execution. Even with 24/7 availability (with some nuances), you do not pay for periods of inactivity. Automation CI/CD, integration with other services, monitoring, log management, and maintaining the execution environment—the provider handles all of this, allowing for faster product deployment. Compared to BaaS infrastructure or full server control (VPS), deploying an application into cloud functions has its downsides: Resource limits Cloud functions have memory and execution time limits, as well as restrictions on data sizes sent or received. Here are examples of such limits in AWS. Cold starts The provider will not keep a container with your function running at all times. If the function has been idle for some time, its next invocation will require time to start up. Startup time depends on the programming language, code size, and the provider’s internal processes, and can reach up to 10 seconds. Here’s a small article with examples on the topic, and a GitHub repo with code and research results. Best Practices Although FaaS-based systems and service ecosystems resemble microservice architecture and functional programming, they have their own best practices beyond monitoring, logging, request tracing, and mocking service responses. Warm Start If your application requires consistently fast responses, cold starts can be a major issue. The solution is to constantly “warm up” the function, for example, by periodically sending requests that create some load so the provider keeps the function active. The load itself does not matter; what matters is triggering the function. If necessary, the provider will scale by starting additional instances on the fly. Some providers offer built-in mechanisms for this (e.g., AWS), allowing you to keep a certain number of instances always running. Fan-Out Pattern A pattern that allows you to bypass memory, data size, and execution time limits by splitting a large task into smaller chunks. Downloading and processing data in chunks, sending emails in small batches—cloud functions will execute tasks in parallel across different function instances. The trade-off is more complex application code and paying for more function invocations. Event Driven Pattern Cloud FaaS functions can be triggered not only via API Gateway or direct invocation. A trigger can be an event from any integrated service, such as a message from Kafka. Event-driven code organization works extremely well for FaaS. Cost Optimization Unlike a fixed-price service (e.g., renting a VPS for a year), Serverless costs are composed of several different services, each with its own billing model. Continuous monitoring of costs and resource utilization, along with load planning, is key to reducing infrastructure expenses. Some providers have special offerings, such as AWS Lambda Reserved Concurrency, which allows reserving Lambda instances and keeping them active on a cheaper pricing tier. Tools for Working with Serverless Serverless Framework An open-source tool for simplifying the development, deployment, and management of serverless applications. It allows developers to focus on writing code without worrying about infrastructure and provider configuration. It supports AWS, Azure, Google Cloud, IBM Cloud, Oracle Cloud. It enables local function testing, integrates with CI/CD systems like Jenkins or Travis, has a large plugin ecosystem, and allows developers to create their own plugins. Terraform A HashiCorp tool representing the "infrastructure as code" approach. It allows defining infrastructure using configuration files in HCL (HashiCorp Configuration Language), which describe the desired infrastructure state rather than the steps to achieve it. Like Serverless Framework, Terraform supports many major cloud providers and allows defining modules, i.e., reusable sets of configuration files for creating and managing infrastructure components. AWS SAM The Serverless Application Model is an open framework created by AWS for developing, testing, and deploying serverless applications on AWS. SAM provides a simplified way to build serverless apps based on CloudFormation, AWS’s main tool for infrastructure as code. Kubeless Unlike the previous tools that focus on cloud providers, Kubeless is a serverless framework for Kubernetes. It allows creating and managing serverless functions directly inside your Kubernetes cluster. It works with standard Kubernetes objects like Deployments, Services, Ingress, etc. It provides scaling and fault tolerance for functions, has a CLI, and integrates with the Kubernetes ecosystem. OpenFaaS An open-source serverless framework. It allows creating functions in many programming languages, including Python, Node.js, Go, Ruby, Java, and others. It supports scaling and ensures fault tolerance. OpenFaaS integrates with Kubernetes and Docker Swarm. Areas of Application Today, Serverless applications cover a wide range of tasks, from notification and mailing services to analytics platforms, data stream processing, webhooks, game servers, file and multimedia processing, IoT applications, adapters for external services, monitoring and logging systems, business process automation, content rendering servers, customer support chatbots, and testing or deployment servers. Many examples exist within the Serverless Framework ecosystem. Major IT companies are migrating some processes to Serverless. For example: Netflix uses FaaS for encoding and transcoding video when preparing video streams for different devices. Airbnb uses Serverless in its StreamAlert system for real-time data analysis. Using Serverless is not only a way to reduce infrastructure costs, but also a tool for increasing development efficiency and flexibility. Serverless allows for rapid development and deployment of new functions and applications, as well as scaling them based on business needs. Additionally, Serverless technologies support creating more reliable and fault-tolerant applications because cloud providers ensure high availability and automatic scaling. This helps companies avoid downtime or service failures that could harm their reputation and customer experience. Development of Serverless Serverless architecture represents a significant step in the evolution of cloud computing, allowing companies to focus on application development without worrying about managing infrastructure. This approach brings flexibility, scalability, and efficiency to development processes while reducing maintenance and operational costs. In the future, we can expect development in several areas: Greater integration and compatibility between cloud providers, allowing users to choose the best solution without vendor lock-in. New services and tools tailored for Serverless architectures, such as advanced tools for monitoring, performance optimization, security, and expanded development and deployment capabilities. Growing adoption among companies, increasing the market’s growth and expanding opportunities for innovations and new business models. Serverless technologies are poised to continue reshaping the landscape of cloud computing, enabling companies to focus on building applications rather than managing infrastructure. With more integrations, new tools, and broader adoption, Serverless will increasingly become a key element in the modern developer’s toolkit.
20 November 2025 · 9 min to read
Infrastructure

How to Choose a Cloud Provider: Checklist

A cloud hosting provider is a company that offers users virtual resources for remote infrastructure management and application deployment. Unlike traditional web hosting, cloud-based service providers allow for flexible configuration of rented resources, helping clients save on hardware, software, and system administration costs. In this article, we’ll review the key factors to consider when choosing a cloud hosting provider, starting with the core services these companies offer. Provided Services There are three main service models that cloud hosting companies typically offer. Ideally, a reliable provider should support all three: IaaS (Infrastructure as a Service): Basic infrastructure resources such as virtual servers, networks, and storage. PaaS (Platform as a Service): Software platforms for various tasks: database management, big data analytics, containerized app development, machine learning systems, and more. SaaS (Software as a Service): Fully managed software solutions that run on the provider’s infrastructure, reducing the load on the client’s computer or mobile device. Key features offered by best cloud providers include: A firewall to protect against DDoS attacks and malware. Automated backups with redundant data storage across multiple locations for disaster recovery. Data encryption to ensure confidentiality; even provider staff cannot access your information. Pricing When evaluating pricing, focus not just on the base rate but on what’s included in the package. Some providers attract customers with low prices, but cheaper plans often come with limited resources or features. For instance: Low-cost plans may not suit clients who handle large data volumes due to disk space limits or slow storage performance. Some providers may offer a “cheap” cloud server but fail to mention that your virtual resources are shared with other clients, reducing performance. Keep in mind: a high-performance server cannot be truly cheap. Company Experience As a rule, the longer a provider has been in the cloud hosting  business, the more reliable it tends to be. However, reputation also matters: look for verified online reviews rather than marketing claims. If a provider has been operating for over 5 years and maintains a solid reputation, it’s usually a trustworthy choice. A broad range of services is also a good indicator of expertise. Certification and Standards A strong advantage is certification under ISO 27001, the international standard for information security management. While not legally required, it shows that the company has a well-structured approach to security: defined access levels, regular internal and external audits, and continuous process improvement. Free Trial Period A trial period can significantly influence a provider’s credibility. If a provider offers 5–10 days (not just a day or two) for testing, it’s a positive sign that they’re confident in the quality of their services. Hardware Pay attention to the performance of CPUs and disk subsystems. Ideally, a provider should offer configurations for different needs, from entry-level setups to high-performance solutions using modern server-grade processors and NVMe drives, which significantly outperform traditional SSDs in speed and reliability. Reliability and SLA A reliable provider must guarantee service uptime in its Service Level Agreement (SLA), typically expressed as a minimum annual availability percentage. The SLA should also guarantee that you receive the computing power and software specified in your plan and that you can modify configurations, add or remove resources, and perform other key management tasks. Data Center Location Providers often advertise the geographic location of their servers as an advantage, but the data center’s certification level is far more important. Look for certification under Tier III, which represents the optimal reliability level (Tier I being the lowest and Tier IV the highest and most expensive). Tier III data centers can perform maintenance without downtime thanks to redundant infrastructure components. Technical Support The quality of technical support is a key differentiator. Pay attention to: Response time. It should be clearly stated in your contract. Willingness to help with tasks like auditing or migrating infrastructure from other services. Professionalism and courtesy—hallmarks of a customer-oriented provider. Contract Termination Even with the best cloud hosting provider, circumstances may change. Before signing up, check: How and when you can retrieve your data. How the provider destroys virtual machines and ensures complete data deletion upon termination. Checklist: Choosing a Cloud Hosting Provider Before making your decision, verify that your provider offers: Support for IaaS, PaaS, and SaaS models with additional features. Flexible, well-priced service packages. 5+ years of experience in the market. (Optional) ISO 27001 certification. A 5–10 day trial period for testing. Multiple hardware configurations with scalable performance. SLA-backed uptime guarantees and resource reliability. A Tier III–certified data center. Qualified, responsive technical support. A secure and transparent contract termination process.
19 November 2025 · 5 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support