Sign In
Sign In

What is a Service Level Agreement (or SLA)

What is a Service Level Agreement (or SLA)
Hostman Team
Technical writer
Infrastructure

SLA is an agreement that outlines what kind (and what level) of service a certain company can provide. This term is mostly used in industries like television or Information Technology.

Unlike regular service contracts Service Level Agreement offers an exceptional amount of detail provided with descriptions of service quality, tech support response time and other indicators.

General SLA principles

The service level agreement usually follows these principles:

  • The interaction between the provider and the client must be as transparent as possible. Every process has to have a clear and reasonable purpose. No blurred terms and puzzled wordings allowed. Both sides should avoid using specific expressions that might be misunderstood.

  • The rules and rights for both sides have to be totally understandable. For instance, a company promises that all the provided services will be accessible 99.99% of the time and if the user finds out that it is not true he should have an opportunity to receive compensation.

  • Expectations management. For example, clients expect tech support to be available at any time as well as answers to the most insignificant questions. But providers can't offer such service. Accordingly a client must change provider or lower his expectations. Or the company has to make the tech support team more performant.

SLA usually contains such data as the amount of time that is needed to resolve a client's problems or what kind of compensation and in what cases the user has the right to ask for it, etc.

SLA doesn't have to be a giant pile of sheets. The most important thing for any company is to make the service level agreement as transparent and natural as possible. Look at successful and large corporations such as Amazon. SLA for their service S3 is fully described on just one page.

Here (link to Amazon) you can read about the monthly uptime of the services and about the level of compensation you'll receive if they are not achieved.

What typical SLA consists of

We peeked into Amazon SLA a couple of lines ago. That is not a standard. It is just one of the ways to design your SLA which takes into consideration the specific characteristics of the service provided by the company (and authors of SLA).

If we're talking about the IT industry, a typical SLA would contain:

  • The rules for using the product or providing some service.

  • Responsibilities of both sides. Mechanisms that help users and providers to control each other in some way.

  • Concrete procedures that might be undertaken by the provider to fix any flaws the user stumbles upon.

You can also find the exactly how long an actual service level agreement will be legitimate. Sometimes both client and provider describe ways of adding new demands to the functionality of the services if necessary.

Moreover, it is normal to list indicators that somehow refer to the actual level of service quality.

  • The reliability and availability of the service.

  • The time it takes to react to system faults and malfunctions.

  • The time it takes to resolve system faults and malfunctions.

You might want to add the way of settling the scores with the client. As an example, some companies ask for money after providing a certain level of service, some companies insist on paying for a fixed plan, etc. Don't forget to tell users about fines if they exist. If it is possible for the client to receive compensation, the job of the service provider is to explain why, how and where the customer can get it.

Key parameters of SLA

The parameters of SLA — is a set of metrics that can be measured somehow. There's no way you would write in SLA something along the lines of "We will fix any fault before you know about it". It is an example of a blurred statement that will only make it harder to achieve a level of agreement between the service provider and the customer.

Let us talk about such a metric as operation mode. It shouldn't be abstract. It must include concrete dates and periods of time when customers can count on the technical support team.

There are examples when a company divides all the customers into separate groups. One of them is allowed to access tech support any time. The second is only allowed to ask for help on workdays. The third can't call for help at all.

Such metrics are extremely important because there's no other way to clearly understand what both sides can expect from their collaboration. That's why you have to consider a few things:

  • Metrics must be published and accessible for anyone.

  • There shouldn't be any statements that can be misunderstood.

  • Any changes in metrics should not happen without warning. Customers have the right to know about any change beforehand.

When you work on establishing metrics do not overdo it. It might increase the price of services provided by the company.

Let's see. We have a problem that might be solved in about 4 hours by a mediocre specialist. An expert can solve the same problem in 2 hours. It is not a good practice to write "2 hours" in your SLA. The job done by a specialist will become much more expensive in the quickest way possible. If you write "1 hour" you will not only pay much more but also will often pay compensations to thoughtful users who believed you but were cheated on.

Operation mode and work hours are not the only metrics that you should care about. What else is important? For example, the time it takes for tech support to respond. Metrics themselves can differ because of external variables like customer status or the seriousness of the problem.

Let's say some company is outsourcing some kind of IT service. This company has a group of users that pays for the premium plan and another group that does not. The time it takes for a tech support team to respond to clients from different groups might vary because one of them is obviously more privileged. One group might get help in 15 minutes and the other in a day. If there are such differences it is extremely important to reflect it in a service level agreement.

Beside the reaction time it is important to speak about the time it takes to resolve the problem the user has run into. The logic of regulating this metric is exactly the same. Even if the customer is really important to the company his queries might be dealt with at differing speeds depending on the seriousness of the problem.

We have a client that has an extremely severe problem — the local network is down and all the inner processes are consequently stuck. Such problems must be prioritized. SLA might include the details for this kind of problem and what type of help the client can expect.

The same customer can ask for help another day but with less critical malfunction. For example, the whole network works well but a few new devices need to be connected to it. It is ok to spend hours and days on such things.

These and a lot of other considerations should be reflected in SLA and accepted both by customer and service provider. Such an approach can help to lessen the amount of potential conflicts. Everything becomes clear and understandable for anyone.

Availability of the service

For the provider, one of the most important parameters in SLA is availability. This metric can be measured in days, hours or minutes for a certain period of time. For instance, a provider can guarantee anyone that its cloud storage will be accessible 99.99% of the time during the year.

In absolute numbers 99 and 100 seem to be quite the same thing. But the difference becomes huge if we analyze those numbers considering that this percentage refers to a period of 365 days. If we say 99% it actually means that the customers agree that the server might be not available for about 4 days per year. And when we talk about 100% there shouldn't be any stand by. But it is impossible to guarantee such reliability. It is always 99.**% with some numbers after the dot.

Considering Hostman, we guarantee 99,99% of uptime. It means that servers might not work for as long as 52 minutes per year.

You might find providers that promise uptime up to 99.9999% and swear that servers will be off for 15 minutes at most. But it's not a good idea to say such things for two important reasons:

  1. The higher the promised uptime the higher the price of the service.

  2. Not that many clients even need such uptime. In most cases 99.98% is more than enough.

The amount of 9s is less important than the actual time that is fixed in SLA. The year is the default period of time used as a metric in SLAs. That means that 99.95% of uptime is 4.5 hours of stand by per year.

But some providers might use different metrics. If there's no concrete info, the user must ask what period of time is used to evaluate the uptime. Some companies try to cheat customers and boast of 99.95% of uptime but mean results per month and not per year.

Another important point is cumulative accessibility. It is equal to the lowest indicator reflected in SLA.

Pros of SLA

Signing and observance of SLA pays off for both sides. Using SLA a company can protect itself from unexpected customer demands (like fixing a not critical problem at 3 AM) and strictly describe its own responsibilities.

There are other advantages of SLA. Providers can settle and put in order not only external processes but also inner ones. For example, with correctly composed SLA a company can implement different layers of technical support and control it in a more efficient manner.

At the same time, customers that sign an agreement will clearly understand what kind of service will be provided and how they can communicate with the company.

The difference between SLA and SLO

SLA can be used as an indication of user-satisfaction level. The highest level is 100% and the lowest is 0%.

Of course, it is impossible to achieve 100% as it is impossible to provide 100% uptime and reflect it in the company's SLA. That's why it is important to choose metrics wisely and be realistic enough about the numbers used in SLA.

If you don't have a team that is ready to work at night, don't promise your customers technical support that is available 24/7. Remember that it is possible to change SLA anytime in future when the team grows and it will be viable for the company to provide a more advanced level of support. Customers will be very happy about that.

There is another system that is used inside companies to monitor the service level. This one is called SLO. O stands for "objectives". It means that the metric is oriented at future company goals. This metric reflects what level of service the company wants to achieve in future.

Here we go again, examples based on tech support. Let's say, at the moment a company can process about 50 requests and work 5 days a week from 9 AM to 6 PM. This data should be fixed and described in SLA so the customers can see it.

At the same time a company creates a second document (service level objectives). It is a foundation of future service improvements. SLO contains current metrics and a list of tasks that should be done so the company achieves a new level of quality growth. For example, the aim to raise the amount of processed user requests from 50 to 75 during the day. The future of SLA strongly depends on a current SLO.

How to create SLA

Starting the process of SLA compiling you'd better begin with the describing part. Usually this part of SLA contains a kind of glossary, abstract system description, roles of users and tech support team, etc. In the same part you can reflect boundaries: territory where service is provided, time, functionality.

The next section — service description (what functions, features and goods a user can get by working with a certain company). In this part of SLA a company must describe in detail what the user can count on after signing the contract and on what terms.

After finishing the first part you can narrow and make further details more specific. That's the main part where the actual level of service is explained minutely. Here you would write about:

  • Metrics that reflect the quality of service provided (and they must be easy to measure).

  • The definition of every metric. That should be concrete numbers and not abstract statements so both sides can refer to this part of SLA.

It is common to put additional useful links (where another set of conditions explained in detail) in the last part of SLA.

In all the stages of preparing an SLA a company must remember that it is a regulation document that helps to control everything connected with the service. The more control a company has over all the processes the better. If SLA doesn't give a company some level of control, there's no reason for such a document to exist.

Checklist: what you should consider while compiling SLA

If you are not signing the SLA but creating your own and composing it to offer the potential clients, keep these things in mind:

  1. Customers. In large systems it is recommended to divide users into separate groups and communicate with every of them individually. This approach helps to distribute resources more effectively and do the job more effectively even in the moments of high loading.

  2. Services. At this stage it is important to consider what group of customers need certain types of services. For example, your company might offer access to a CRM system for every e-commerce business. If they can't access it their business will fail and the clients will start to lose money. And consequently it will lead them to the service provider who failed them. That's why such services get the highest importance rating and must be prioritized over some simple tasks like changing the printer or creating a new account.

  3. Parameters of service quality. These parameters should be connected with the business targets your company follows and the desires of the users. For example, time and conditions at which any service is provided. One company may want to work 24/7 and the other only offers access to a tech support team 5 days a week from 9 AM to 9 PM.

    Any changes to SLA should be explained to every user (regardless of his status or level of privilege) before the actual changes come into force.

    SLA is an ever-changing technology. In real use cases you will see that some parameters or aims do not correlate well with the general direction the business is taking. And that's why the management team often decides to correct SLA and optimize it.

    Remember, SLA is not a marketing tool, it is a way for the company to talk to its users in the clearest, most efficient way. Everyone accepts the rules in SLA.

Infrastructure

Similar

Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read
Infrastructure

How to Speed Up Development with Cloud Technologies

From the point of view of a software-development company, the computing infrastructure needed for developing and supporting software can be of two types: Servers owned by the development company The application developer physically hosts the server equipment directly in their office or data center, maintains it themselves, and ensures data security. This approach has become less popular over the years. Developers prefer using a provider that offers computing power on its own equipment on a paid basis. Advantages: Full physical control over the servers High data security and confidentiality Disadvantages: Financial costs for server hardware Financial costs for maintenance (specialists, equipment) Need for experience and expertise to support data centers Servers managed by another organization The application developer chooses a provider from whom they remotely rent computing resources. Today, this is the most optimal option for most companies. Advantages: No need for own equipment The amount of computing resources used is flexibly adjustable No need for experience or expertise in network communications Disadvantages: The provider is responsible for data security and confidentiality No physical control over the servers What Are Cloud Technologies? Cloud technologies are technical solutions that provide users with computing power through a flexibly configurable online service. The cloud belongs to the provider of cloud resources, who owns the physical servers. Although clouds from different providers have their own unique features, they generally include the following basic components: servers storage databases network infrastructure software testing and analytics tools Physical and Logical Layers The main feature of the cloud is that, unlike the traditional server-rental model, it separates the physical and logical layers. This means that data processing and network interactions exist on top of the physical base—the server machines located in data centers (DCs). This is why cloud allows the flexible configuration of the resources a specific application requires. This architecture can be represented hierarchically: Logical layer: operating systems, virtualization systems, containers, server applications, application-level network protocols, business logic, client applications Physical layer: server machines, motherboards, ASIC controllers, low-level network protocols Cloud Models There are several types of clouds that differ in the degree of abstraction of the software (logical) level. IaaS (Infrastructure as a Service) Only computing power is provided, with just the operating system and sometimes additional software. Examples: Amazon Web Services Microsoft Azure Google Cloud Hostman Cloud Servers PaaS (Platform as a Service) Along with computing power, a set of tools for development and administration is provided. Examples: Red Hat OpenShift AWS Elastic Beanstalk Google App Engine Hostman App Platform SaaS (Software as a Service) A client application with ready-to-use functionality that does not require specialized knowledge. Examples: Google Drive Salesforce Dropbox Types of Clouds Clouds differ in their degree of isolation, from fully public to fully private. There are also mixed implementations. Public Computing resources are located in the provider’s data center. All cloud provider resources are distributed among users depending on the chosen pricing plans. Private The cloud is completely isolated (sometimes even disconnected from the global Internet) and is physically located on the user's server equipment. There are also cases when the cloud provider offers isolated server resources for a specific client, while other users use the public part of the cloud. Hybrid A combination of a private cloud and a public one. Usually, business logic containing sensitive data is placed in the private cloud, while “peripheral” computing is performed in the provider’s public cloud. Advantages of Cloud Technologies Simplified Development Using any of the existing cloud models clearly simplifies the development process. The closer a chosen model is to SaaS, the easier it is to interact with the cloud, but the more standardized and typical the solution becomes. The closer a chosen model is to IaaS, the more precisely the cloud can be configured, but the more complex it becomes to maintain. Therefore, the cloud model is selected individually for every case. A standardized solution may not fit someone if the product being developed requires a more unique technical implementation. For example, using cloud databases (DBaaS) provided by Hostman removes many responsibilities from the developer regarding managing their own storage. While deploying a database cluster can be done fairly quickly and easily, using it properly “in the long run” requires certain expertise. Thus, to stay focused on development, it makes sense to entrust this function to an experienced provider with established methodologies, expertise, and the necessary technical solutions. Cost Optimization In the cloud, user expenses match the amount of resources used in their work tasks. This payment model, "pay-as-you-go", is fundamental to cloud computing: you pay only for the resources you use. If, at some point, more resources are needed, they are allocated quickly and increase costs. Conversely, extra resources can be “returned” to the provider, reducing expenses. In other words, the user’s financial expenses correlate with the number of resources consumed. Allocation and release of resources happen instantly. Additionally, delegating cloud-infrastructure management to the provider eliminates the developer’s costs associated with maintaining their own data center: Hiring specialists and administrators Purchasing server equipment Renting premises Faster Deployment Instant access to cloud resources and the ability to configure them flexibly significantly reduces the time: From the start of MVP development of a new product to its deployment in a production environment From the start of developing new features to adding them to the finished product For example, the development process of a new service might look like this: Managers formalize requirements for the future product. Developers determine the technology stack. The development company rents the necessary computing resources from a cloud provider, including cloud servers, Kubernetes clusters, and object storage. Developers write code, which is automatically deployed in the provider’s cloud environment. The new product is tested, and user feedback is collected. Based on the collected data, managers decide whether further support is justified. If the product does not meet expectations, the allocated resources are returned to the provider. If successful, the computing resources can be expanded. In some cases, a developer may use multiple clouds from completely different providers, forming what is called a multi-cloud. 1. Cloud Server Cloud servers differ from dedicated servers in that the “physical” configuration is adjusted within a certain range. For example, Hostman cloud servers can be parameterized using a configurator. In this case, the rental cost corresponds to the capacities selected in the account panel. Accordingly, when workloads change, a cloud server can be scaled: CPU cores, RAM, disk space, or connection speed can be increased. 2. Cloud Databases In addition to the computing power provided by the cloud server, most projects require a specialized database. Hostman provides most popular database engines as a separate cloud service: MySQL PostgreSQL Redis and others As with servers, computing resources for a database can be configured based on several parameters: Number of cores RAM NVMe disk size Rental period When ordering a database, you don’t need to configure hardware, track software updates, or administer the database: the infrastructure is managed by Hostman. 3. Kubernetes A crucial component of cloud development is automation of building, deploying, and testing using CI/CD pipelines. CI/CD is the basis of the DevOps methodology, whose goal is to automate changes to software. Cloud services provide the needed capabilities for this. For example, GitHub CI/CD and GitLab CI/CD infrastructures have special cloud tools that simplify creating CI/CD pipelines, including test environments, storage, notification functions, and databases. Modern applications consist of microservices placed in containers. Kubernetes, the standard for container orchestration, is used for management and monitoring. Kubernetes clusters from Hostman can be a suitable solution. In this case, the developer avoids the costs associated with maintaining their own infrastructure as the execution of Kubernetes applications is handled by the provider. Conclusion In this article, we reviewed what efficient development using cloud services looks like, and also mentioned the most popular developer tools: Cloud servers Databases Monitoring tools (CI/CD, Kubernetes) While creating your own data centers requires time, expertise, and significant financial investment, the cloud is provided by a provider in a refined and secure form. A ready-made cloud helps developers immediately focus on the business logic of the application, thus speeding up development and integration of innovations. Today, public cloud services are available even in areas that were previously predominantly non-cloud. Clouds are being implemented even in enterprises unrelated to IT. Therefore, cloud technologies not only accelerate development but also accelerate digital transformation as a whole.
24 November 2025 · 8 min to read
Infrastructure

Microservices Architecture: What It Is, Who It’s For, and Tools to Use

Every developer strives to speed up product development while maintaining enough flexibility and confident control over the process. Microservices application architecture helps solve these tasks and, over the past 10 years, has begun actively competing with the traditional monolithic approach. To begin, let’s look at the difference between them. Microservices Architecture vs. Monolith The difference between these two software development approaches is easiest to illustrate with an example. Let’s imagine two online stores: one implemented as a monolith and the other as microservices. A monolithic online store is a single, indivisible structure that combines all components: databases (catalog, customer data), shopping cart, order and payment forms. All of these elements are tightly interconnected and located on the same server. In a microservices system, each component is an independent module that developers can work on separately. And naturally, nothing requires hosting these modules on a single server. Thus, microservices architecture is a kind of constructor that allows you to add new elements painlessly as you scale the application. A monolith, on the other hand, can be compared to a solid wall: scaling here is only possible by adding another identical monolith. It’s worth adding that microservices are sometimes mistakenly perceived as a set of very small services. This is not the case: for example, the database of a large online store may contain millions of records and occupy tens of gigabytes, yet still be just one of the modules within the microservices architecture of the whole application. Comparing Microservices and Monoliths by Key Criteria Now let’s look at the main characteristics of microservices technology in comparison with a monolith and see how both approaches solve the same developer tasks. Release Cycles Development speed and frequency of updates increase with microservices thanks to modularity: changes are made not to the entire codebase but to individual modules. With a monolith, however, the whole platform must be updated first, which increases testing and debugging time. As a result, development slows down and updates are released less frequently. Technology Stack The microservices model offers significantly greater flexibility because each service can be written in its own programming language and may use different libraries and data-storage technologies. With a monolith, the situation is different: changing the technology stack is nearly impossible. Developers are forced to stick to the initial tools. Developer Onboarding Each module in a microservices architecture is self-contained, making it possible to bring in programmers who are familiar with the functionality of a specific service. This substantially lowers the onboarding threshold. With a monolith, new developers must dive into the code of the entire application, understand the functions of every block, and only then begin productive work. Thus, maintaining a monolith is more dependent on specific team members. Optimization Characteristics The modularity of microservices architecture also positively affects optimization, since developers can optimize each service separately. Optimizing a monolithic structure is more difficult because the team must account for links between indivisible blocks, and updating any one of them inevitably affects the entire application. Application Scalability The distributed structure of microservices and their ability to run on separate servers make scaling fast and easy. In monoliths, scaling one component inevitably requires scaling the entire application as a whole. Fault Tolerance Because services are hosted on different servers and have a modular structure, microservices architecture achieves independence of each module. This significantly increases system resilience: a failure in one service does not cause the entire application to fail. With a monolith, the situation is different: all components are tightly interconnected, so the failure of one module can make the entire application inoperable. Do I Need to Switch to Microservices Right Now? As we’ve seen, microservices have advantages in many key areas. But does this mean you need to abandon monoliths as an outdated approach and immediately switch to microservices? The answer depends on the current state of your project. And let’s say right away: rushing to adopt microservices is not always the right choice. Distributed architecture also has its drawbacks. First, microservices require ensuring network connectivity between modules. If a network connection is unstable, this leads to delays and data inconsistencies, which create potential problems in application behavior. Second, each module of a microservices system requires separate testing and health monitoring. Additionally, you will need to allocate cloud resources for each module, which may increase costs. Third, with the microservices approach, teams responsible for different modules may encounter interaction issues. This means you may need a connecting link in the form of DevOps specialists who can streamline collaboration and speed up development. All the factors listed above allow us to conclude that the transition to microservices must be timely. Usually, during the early stages of a project, this is unnecessary, especially if developers have limited human or financial resources. Switching to a microservices architecture makes sense when there is a clear need for significant scaling, and scaling a monolith has already become difficult. Microservices may be right for you if: You have a large team. In this case, it makes sense to divide the team into separate, independent groups, each responsible for its own service; You have a complex, branched application. In this case, it’s far more convenient to update and maintain modules separately than to rebalance the entire system each time; Your application traffic is highly variable. For example, you see sharp spikes in load during certain periods. Microservices' distributed structure allows quick scaling during peak loads, after which you can easily return to normal capacity levels; Your application is frequently updated. Working with separate modules in this scenario is much simpler, and new releases will be significantly faster. If your project meets at least one of these criteria, this is a reason to consider breaking it into independent elements. However, if your application is relatively small and does not require frequent updates, it is reasonable not to rush away from monolithic architecture. Useful Tools for Organizing Microservices A modern development approach requires a containerization platform. In most cases, developers use Docker for these purposes. Docker tools allow them to isolate the application from the infrastructure, meaning they can work with it equally well locally or in the cloud, which is very convenient for development. Once containers become numerous, an orchestrator becomes essential for managing and organizing groups of containers. Kubernetes is most commonly used as an orchestrator due to its strong compatibility with Docker. Another necessary tool is a load balancer, which ensures even distribution of network traffic across all cloud resources. This significantly increases the application’s fault tolerance.
21 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support