Sign In
Sign In

What is a CDN: Principles of Content Delivery Networks

What is a CDN: Principles of Content Delivery Networks
Hostman Team
Technical writer
Infrastructure

Latency, latency, latency! It has always been a problem of the Internet. It was, it is, and it probably will be. Delivering data from one geographic point to another takes time.

However, latency can be reduced. This can be achieved in several ways:

  • Reduce the number of intermediate nodes on the data path from the remote server to the user. The fewer the handlers, the faster the data reaches the destination. But this is hardly feasible. The global Internet continues to grow and become more complex, increasing the number of nodes. More nodes = more power. That’s the global trend. Evolution!

  • Instead of regularly sending data over long distances, we can create copies of it on nodes closer to the user. Fortunately, the number of network nodes keeps growing, and the topology spreads ever wider. Eureka!

The latter option seems like an absolute solution. With a large number of geographically distributed nodes, it's possible to create a kind of content delivery network. In addition to the main function—speeding up loading—such a network brings several other benefits: traffic optimization, load balancing, and increased fault tolerance.

Wait a second! That's exactly what a CDN is—Content Delivery Network. So, let’s let this article explain what a CDN is, how it works, and what problems it solves. 

What is a CDN?

A CDN (Content Delivery Network) is a distributed network of servers designed to accelerate multimedia content delivery (images, videos, HTML pages, JavaScript scripts, CSS styles) to nearby users.

Like a vast web, the CDN infrastructure sits between the server and the user, acting as an intermediary. Thus, content is not delivered directly from the server to the user but through the powerful "tentacles" of the CDN.

What Types of Content Exist?

Since the early days of the Internet, content has been divided into two types:

  • Static (requires memory, large in size). Stored on a server and delivered to users upon request. Requires sufficient HDD or SSD storage.

  • Dynamic (requires processing power, small in size). Generated on the server with each user request. Requires enough RAM and CPU power.

The volume of static content on the Internet far exceeds that of dynamic content. For instance, a website's layout weighs much less than the total size of the images embedded in it.

Storing static and dynamic content separately (on different servers) is considered good practice. While heavy multimedia requests are handled by one server, the core logic of the site runs on another.

CDN technology takes this practice to the next level. It stores copies of static content taken from the origin server on many other remote servers. Each of these servers serves data only to nearby users, reducing load times to a minimum.

What Does a CDN Consist Of?

CDN infrastructure consists of many geographically distributed computing machines, each with a specific role in the global data exchange:

  • User. The device from which the user sends requests to remote servers.
  • Origin Server. The main server of a website that processes user requests for dynamic content and stores the original static files used by the CDN as source copies.
  • Edge Node. A server node in the CDN infrastructure that delivers static content (copied from the origin server) to nearby users. Also called a Point of Presence (PoP).

A single CDN infrastructure simultaneously includes many active users, origin servers, and edge nodes.

What Happens Inside a CDN?

First, CDN nodes perform specific operations to manage the rotation of static content:

  • Caching. The process of loading copies of content from the origin server to a CDN server, followed by optimization and storage.
  • Purge (Cache Clearing). Cached content is cleared after a certain period or on demand to maintain freshness on edge nodes. For example, if a file is updated on the origin server, the update will take some time to propagate to the caching nodes.

Second, CDN nodes have several configurable parameters that ensure the stable operation of the entire infrastructure:

  • Time to Live (TTL). A timeout after which cached content is deleted from an edge node. For images and videos, TTL can range from 1 day to 1 year; for API responses (JSON or XML), from 30 seconds to 1 hour; HTML pages may not be cached at all. CDN nodes usually respect the HTTP Cache-Control header.
  • Caching Rule. A set of rules that determines how an edge node caches content. The primary parameter is how long the file remains in the cache (TTL).
  • Restriction. A set of rules on the edge node that moderates access to cached content for security purposes. For example, an edge node may serve requests only from nearby IP addresses or specific domains.

Thus, static content flows from the origin server through edge nodes to users, cached based on specific caching rules, and cleared once the TTL expires. Meanwhile, access restrictions are enforced on every edge node for security.

How Does a CDN Work?

Let's see how a CDN works from the user's perspective. We can divide the process into several stages:

  1. User Request Execution. When a user opens a website, the browser sends requests to CDN servers specified in HTML tags or within JavaScript code (such as Ajax requests). Without a CDN, requests would go directly to the origin server.
  2. Finding the Nearest Server. Upon receiving the request, the CDN system locates the server closest to the user.
  3. Content Caching. If the requested content is in the cache of the found CDN server, it is immediately delivered to the user. If not, the CDN server sends a request to the origin server and caches the content.
  4. Data Optimization. Content copies on CDN servers are optimized in various ways. For example, files can be compressed using Gzip or Brotli to reduce size.
  5. Content Delivery. The optimized and cached content is delivered to the user and displayed in their browser.

For instance, if a website’s origin server is in Lisbon and the user is in Warsaw, the CDN will automatically find the nearest server with cached static content—say, in Berlin.

If there is no nearby CDN server with cached content, the CDN will request the origin server. Subsequent requests will then be served through the CDN.

The straight-line distance from Warsaw to Lisbon is about 2800 km, while the distance from Warsaw to Berlin is only about 570 km.

Someone unfamiliar with networking might wonder: “How can a CDN speed up content delivery if data travels through cables at the speed of light—300,000 km/s?”

In reality, delays in data transmission are due to technical, not physical, limitations:

  • Routing. Data passes through many routers and nodes, each adding small delays from processing and forwarding packets.
  • Network Congestion. High traffic in some network segments can lead to delays and packet loss, requiring retransmissions.
  • Data Transmission Protocols. Protocols like TCP include features such as connection establishment, error checking, and flow control, all of which introduce delays.

Thus, the difference between 2800 km and 570 km is negligible in terms of signal propagation. But from a network infrastructure perspective, it makes a big difference.

Moreover, a CDN server in Berlin, finding no cached content, might request it not from the origin server but from a neighboring CDN node in Prague, if that node has the content cached.

Therefore, CDN infrastructure nodes can also exchange cached content among themselves.

What Types of CDN Exist?

There are several ways to classify CDNs. The most obvious is based on the ownership of the infrastructure:

  • Public. The CDN infrastructure is rented from a third-party provider. Suitable for small and medium-sized companies.
  • Private. The CDN infrastructure is deployed internally by the company itself. Suitable for large companies and IT giants.

Each type has its own pros and cons:

 

Public

Private

Connection speed

High

Low

Initial costs

Low

High

Maintenance complexity

Low

High

Cost of large-scale traffic

High

Low

Control capabilities

Low

High

Dependence on third parties

High

Low

Many CDN providers offer free access to their infrastructure resources to attract users. However, in such cases, there are limitations on:

  • Server capacity
  • Traffic volumes
  • Geographical coverage
  • Advanced configuration options

Paid CDN providers use various pricing models:

  • Pay-as-you-go. Costs depend on the volume of data transferred, measured in gigabytes or terabytes.
  • Flat-rate pricing. Costs depend on the chosen plan with a fixed amount of available traffic.
  • Request-based pricing. Costs depend on the number of user requests made.

Deploying your own CDN infrastructure is a serious step, usually justified by strong reasons:

  • Public CDN costs exceed the cost of running your own infrastructure. For example, high expenses due to massive multimedia traffic volumes.
  • The product hits technical limitations of public CDNs. For example, heavy network loads or a specific user geography.
  • The project demands higher reliability, security, and data privacy that public CDNs cannot provide. For example, a government institution or bank.

Here are a few examples of private CDN networks used by major tech companies:

  • Netflix Open Connect. Delivers Netflix’s streaming video to users worldwide.
  • Google Global Cache (GGC). Speeds up access to Google services.
  • Apple Private CDN. Delivers operating system updates and Apple services to its users.

What Problems Does a CDN Solve?

CDN technology has evolved to address several key tasks:

  • Faster load times. Files load more quickly (with less latency) because CDN servers with cached static content are located near the user.
  • Reduced server load. Numerous requests for static content go directly to the CDN infrastructure, bypassing the origin server.
  • Global availability. Users in remote regions can access content more quickly, regardless of the main server’s location.
  • Protection against attacks. Properly configured CDN servers can block malicious IP addresses or limit their requests, preventing large-scale attacks.
  • Traffic optimization. Static content is compressed before caching and delivery to reduce size, decreasing transmitted data volumes and easing network load.
  • Increased fault tolerance. If one CDN server fails or is overloaded, requests can be automatically rerouted to other servers.

The CDN, being a global infrastructure, takes over nearly all core responsibilities for handling user requests for static content.

What Are the Drawbacks of Using a CDN?

Despite solving many network issues, CDNs do have certain drawbacks:

  • Costs. In addition to paying for the origin server, you also need to pay for CDN services.
  • Privacy. CDN nodes gain access to static data from the origin server for caching purposes. Some of this data may not be public.
  • Availability. A site’s key traffic may come from regions where the chosen CDN provider has little or no presence. Worse, the provider might even be blocked by local laws.
  • Configuration. Caching requires proper setup. Otherwise, users may receive outdated data. Proper setup requires some technical knowledge.

Of course, we can minimize these drawbacks by carefully selecting the CDN provider and properly configuring the infrastructure they offer.

What Kind of Websites Use CDNs?

In today’s cloud-based reality, websites with multimedia content, high traffic, and a global audience are practically required to use CDN technology. Otherwise, they won’t be able to handle the load effectively.

Yes, websites can function without a CDN, but the question is, how? Slower than with a CDN.

Almost all major websites, online platforms, and services use CDNs for faster loading and increased resilience. These include:

  • Google
  • Amazon
  • Microsoft
  • Apple
  • Netflix
  • Twitch
  • Steam
  • Aliexpress

However, CDNs aren’t just for the big players — smaller websites can benefit too. Several criteria suggest that a website needs distributed caching:

  • International traffic. If users from different countries or continents visit the site. For example, a European media site with Chinese readers.
  • Lots of static content. If the site contains many multimedia files. For example, a designer’s portfolio full of photos and videos.
  • Traffic spikes. If the site experiences sharp increases in traffic. For example, an online store running frequent promotions or ads.

That said, there are cases where using a CDN makes little sense and only complicates the web project architecture:

  • Local reach. If the site is targeted only at users from a single city or region. For example, a website for a local organization.
  • Low traffic. If only a few dozen or hundreds of users visit the site per day.
  • Simple structure. If the site is a small blog or a minimalist business card site.

Still, the main indicator for needing a CDN is a large volume of multimedia content.

Where Are CDN Servers Located?

While each CDN’s infrastructure is globally distributed, there are priority locations where CDN servers are most concentrated:

  • Capitals and major cities. These areas have better-developed network infrastructure and are more evenly spaced worldwide.
  • Internet exchange points (IXPs). These are locations where internet providers exchange traffic directly. Examples include DE-CIX (Frankfurt), AMS-IX (Amsterdam), LINX (London).
  • Data centers of major providers. These are hubs of major internet backbones that enable fast and affordable data transmission across long distances.

The smallest CDN networks comprise 10 to 150 servers, while the largest can include 300 to 1,500 nodes.

Popular CDN Providers

Here are some of the most popular, large, and technologically advanced CDN providers. Many offer CDN infrastructure as an add-on to their cloud services:

  • Akamai
  • Cloudflare
  • Amazon CloudFront (AWS CDN)
  • Fastly
  • Google Cloud CDN
  • Microsoft Azure CDN

There are also more affordable options:

  • BunnyCDN
  • KeyCDN
  • StackPath

Some providers specialize in CDN infrastructure for specific content types, such as video, streams, music, or games:

  • CDN77
  • Medianova

Choosing the right CDN depends on the business goals, content type, and budget. To find the optimal option, you should consider a few key factors:

  • Goals and purpose. What type of project needs the CDN: blog, online store, streaming service, media outlet?
  • Geography. The provider's network should cover regions where your target audience is concentrated.
  • Content. The provider should support caching and storage for the type of content used in your project.
  • Pricing. Which billing model offers the best value for performance?

In practice, it’s best to test several suitable CDN providers to find the right one for long-term use.

In a way, choosing a CDN provider is like choosing a cloud provider. They all offer similar services, but the implementation always differs.

Conclusion

It’s important to understand that a CDN doesn’t fully store static data; it only distributes copies across its nodes to shorten the distance between the origin server and the user.

Therefore, the main role of a CDN is to speed up loading and optimize traffic. This is made possible through the caching mechanism for static data, which is distributed according to defined rules between the origin server and CDN nodes.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support