Sign In
Sign In

Structure and Types of File Systems in Linux

Structure and Types of File Systems in Linux
Hostman Team
Technical writer
Infrastructure

The Linux file system is a complex tree-structured system that begins at the root. It consists of directories and subdirectories. Every file and file system is interconnected. This structure follows the typical scheme proposed by the FHS — a standard supported by the Linux Foundation.

Features of File Systems

A file system is how files are named, stored, retrieved, and updated on a disk or storage partition. The file system's structure must have a predefined format that the operating system understands.

The organization of a file system involves formatting, partitioning, and the method of storing organized data structures on a hard (or floppy) disk.

Such a system shell is divided into two segments: metadata (file name, creation date, size) and user data.

Your computer uses this file system to determine the location of files in your storage.

For example, Windows' main file systems are NTFS, FAT, and FAT32. NTFS supports three types of file links: hard links, junction points, and symbolic links (NTFS Links). The NTFS structure is one of the most efficient and complex to date. Each cluster on the medium has an entry in the FAT table. Entries indicate the assignment of file parts to a cluster. Each file entry concatenates with other file entries, starting from the first cluster. Since the first FAT system could handle only eight-character filenames, some limitations were lifted in FAT16 and then in FAT32.

Types of File Systems in Linux

File system types offered during the installation of a Linux-based OS include:

  • Ext
  • Ext2
  • Ext3
  • Ext4
  • JFS
  • XFS
  • Btrfs
  • Swap

These file system types have different functionalities and sets of predefined commands.

Ext — extended file system. It was introduced in 1992 and is considered one of the first.

Its functionality was partly developed based on the UNIX file system. The initial goal was to go beyond the file system used before it (MINIX) and overcome its limitations. Today it is hardly used.

Ext2 — "second extended file system". Known since 1993. It was developed as an analog of the previous file system.

It implemented innovations in memory volume and changed overall performance. It allows storing up to 2 TB of data. Like ext, it has little prospect, so it should be avoided.

Ext3 — third extended file system. Introduced in 2001. It surpasses the previous one in that it is journaled.

A journaling file system is one that writes changes (updates) to files and data in a separate journal before these actions are completed.

This file system uses an algorithm that allows recovering files after a reboot.

Ext4 — fourth extended system. Created in 2006. It overcame many limitations of the third version. It is widely used today and is the default file system in most Linux distributions.

Although it may not be the most advanced, it is reliable and stable enough, so it is commonly used in a wide range of Unix systems.

Therefore, if you don’t want to overthink the pros and cons of the many file systems you can choose from, experts recommend sticking with this one.

Alternative File Systems

JFS — created by IBM in 1990. The name JFS stands for Journaling File System. It easily restores data after a power failure and is quite reliable. Moreover, it consumes less processor power than other file systems.

XFS — high-performance file system. Created by Silicon Graphics. Originally intended for their IRIX OS, it was later ported to Linux. Today, XFS for Windows also exists.

Created in 1990, XFS is a 64-bit high-performance journaling system shell. It works well with large files but not particularly with smaller ones.

Btrfs — an alternative file system proposed by Oracle in 2009. It is considered a competing file system to Ext4, although the latter is generally regarded as the better version (faster data transfer, more stability). However, Btrfs has several unique advantages. Overall, it offers excellent performance.

Types of Linux Files

Linux file types include:

  • regular file
  • named pipe
  • device file
  • soft link (symbolic link)
  • directories
  • socket
  • door

File Types

Purpose

Regular files

Storing character and binary data

Directories (d)

Organizing access to files

Symbolic links (l)

Providing access to files located on any media

Block devices (b)

Interface for interacting with computer hardware

Character devices (c)

 

Pipes (p)

Organizing inter-process communication

Sockets (s)

 

A directory is a file containing other organized data structures (directories) and provides pointers to them. It acts as a folder in a filing cabinet (grouping related files). But while folders contain only files, directories may contain additional directories (subdirectories).

A symbolic (soft) link points to the name and location of a specific file. When a user copies, moves, or otherwise acts on the link, the operation is performed on the file it references.

Hard links are created separately. A hard link points to the actual data in the file just like a regular file. Apart from the name, there is no difference between the original file and a hard link pointing to the same data. Both files are regular files. A hard link can only be distinguished from any other regular file by the number of links each has. The number of links is shown in the second column of the ls -l listing. If the number is greater than 1, then additional hard links to the data exist.

All physical devices used by Linux are represented by device files. Device files are classified as special characters or special blocks. Special character files represent devices that interact with Linux character by character. Printers are an example of such devices.

Block-special files are hard and floppy disks and CD-ROMs interacting with the OS using data blocks.

Device files are extremely powerful because they allow users to access hardware devices such as drives, modems, and printers as if they were data files. They can be easily moved and copied, and data can be transferred between devices often without using special commands or syntax.

Linux OS Directories

The Linux directory structure is tree-shaped (branching). It’s important to highlight a characteristic specific to Unix-like systems: these OSes aim for simplicity and treat every object as a sequence of bytes. In Unix, these sequences are represented as files. 

Unlike Windows OS, which has multiple roots, the Linux file system allows only one root. The root directory is where all other directories and OS files reside (denoted by a forward slash /).

The entire Linux folder structure is represented in a single directory called the root directory.

Main Directories in the Root Directory

  • /home
    This is the home directory. Since Linux is a multi-user environment, each user is assigned a separate object in the system, accessible only to them and the superuser.
  • /bin and /sbin
    bin stands for binary. This is where the OS stores core program codes. Binary files are executable structured data containing compiled source code.
    sbin stands for system binary. This directory is reserved for software necessary for system recovery, booting, and rollback.
  • /opt
    Stands for "optional". This is where manually installed applications and programs are stored.
  • /usr
    usr stands for Unix System Resources. This directory contains user-level applications, unlike /bin or /sbin, which house system-level applications.
    Subdirectories under /usr include:
    • /usr/bin – most binary programs
    • /usr/include – header files needed for source code compilation
    • /usr/sbin – directories for recurring tasks
    • /usr/lib – libraries
    • /usr/src – kernel source code and header files
    • /usr/share – architecture-independent files (documents, icons, fonts)
      Originally intended for all user-related content, /usr has evolved into a location for software and data used by users.
  • /lib, /lib32, /lib64
    These are directories of library files — programs used by other applications.
  • /boot
    A static bootloader that contains the kernel's executable file and other configuration files needed to start the PC.
  • /sys
    This is where the user interacts with the kernel. It is considered a structured path to the kernel. The directory is mounted with a virtual file system called sysfs, serving as the kernel interface for accessing data about connected devices.
  • /tmp
    Temporary files needed by applications during a session are stored here.
  • /dev
    Contains special device files that allow software to interact with peripherals. Device files are categorized into character and block devices.
    A block device performs data input/output in blocks (e.g., an SSD), while a character device handles input/output as a stream of characters (e.g., a keyboard).
  • /proc
    proc stands for process. This directory contains pseudo-files that provide information about system resources.
  • /run
    This directory is mounted with a virtual tmpfs file system and holds runtime files related to active processes. These files exist in RAM and disappear when the session ends.
  • /root
    The home directory for the superuser (administrator).
  • /srv
    The service catalog. If you use a web server, you can store data for a specific webpage here.

File System and Data Storage Paths on Physical Disk

Linux directories map the names of structured data to their addresses on the physical disk. Linux directories have a predefined size to store metadata.

Files in directories use inodes (index nodes). An inode stores the disk block address and file attributes.

Each directory and file information in Linux contains an inode, and the inode itself holds a list of pointers referencing disk blocks.

A directory in the file system is an inode that stores information about all structured data names it contains.

Another note about inodes: Inodes are unique, but the names pointing to these nodes are not. This is why inodes track hard links.

Linux Architecture

The architecture of Linux consists of the hardware layer, kernel, system library, system, and utilities.

At the top is user space, where user applications run. Below this is the kernel space, where the OS kernel resides.

There is also a specific library collection called the GNU C Library (glibc). This library provides the OS call interface that bridges the kernel and user applications. Both user applications and the kernel operate in their own protected address spaces. Each user process has its own virtual address space, while the kernel has a unified address space.

The kernel structure includes three main levels:

  1. System Call Interface (SCI) – the top level that handles system calls (e.g., file writing).
  2. Core kernel code – an architecture-independent object shared across supported architectures.
  3. Architecture-specific code – forms the Board Support Package, designed specifically for the processor and platform of the given architecture.

Linux architecture is examined from various perspectives. A key goal of architectural decomposition is to enhance understanding.

Kernel Tasks

The kernel performs several functions:

  • Process management – determines which processes use the CPU, when, and for how long.
  • Memory management – monitors memory usage, allocation location, and duration.
  • Device drivers – serve as interpreters between hardware and processes.
  • System calls – handle service requests from active processes.

The kernel is invisible to the user and operates in its own realm (kernel space). What users see (browsers, files) exists in user space. These applications interact with the kernel through the System Call Interface.

Linux Operating Layers

  • Linux Kernel – OS software residing in memory that instructs the CPU.
  • Hardware – the physical machine consisting of RAM, CPU, and I/O devices like storage, network, and graphics. The CPU performs computations, reads memory, and writes to RAM.
  • User Processes – running programs managed by the kernel, collectively forming user space. These processes interact with each other via inter-process communication (IPC).

OS code executes on CPUs in two modes: kernel mode and user mode. Kernel mode has unrestricted hardware access, while user mode restricts access to memory, SCI, and CPU. This division also applies to memory (kernel space vs. user space) and enables complex operations like privilege separation and virtual machine creation.

Linux Distributions

Above the OS kernel, a Linux distribution is a collection of applications (typically open-source). A distribution may include server software, admin tools, documentation, and various desktop applications.

It aims to offer a consistent interface, safe and simple software management, and often a specific operational purpose.

Linux is freely distributed and accessible through multiple means. It is used by individuals and organizations and is often combined with free or proprietary software.

A distribution typically includes all software needed for installation and use.

Popular Linux distributions include:

  • Red Hat
  • Ubuntu
  • Debian
  • CentOS
  • Arch Linux
  • Linux Mint

These distributions can be used by beginners and system administrators. For example, Ubuntu is suitable for novices due to its user-friendly interface. Arch Linux is more suited to professionals, offering fewer pre-installed packages.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support