Sign In
Sign In

NoSQL Databases Explained: Types, Use Cases & Core Characteristics

NoSQL Databases Explained: Types, Use Cases & Core Characteristics
Hostman Team
Technical writer
Infrastructure

NoSQL (which stands for "Not Only SQL") represents a new class of data management systems that deviate from the traditional relational approach to information storage. Unlike conventional DBMSs, such as MySQL or PostgreSQL, which store data in tables with fixed structures and strict relationships, NoSQL offers more flexible methods for organizing and storing information. This technology doesn't reject SQL; rather, it expands the ways to handle data.

The origin of the term NoSQL has an interesting backstory that began not with technology but with the name of a tech conference. In 2009, organizers of a database event in San Francisco adopted the term, and it unexpectedly caught on in the industry. Interestingly, a decade earlier, in 1998, developer Carlo Strozzi had already used the term "NoSQL" for his own project, which had no connection to modern non-relational systems.

Modern NoSQL databases fall into several key categories of data storage systems. These include:

  • Document-oriented databases (led by MongoDB)
  • Key-value stores (e.g., Redis)
  • Graph databases (Neo4j is a prominent example)
  • Column-family stores (such as ClickHouse)

The unifying feature among these systems is their rejection of the classic SQL language in favor of proprietary data processing methods.

Unlike relational DBMSs, where SQL serves as a standardized language for querying and joining data through operations like JOIN and UNION, NoSQL databases have developed their own query languages. Each NoSQL database offers a unique syntax for manipulating data. Here are some examples:

// MongoDB (uses a JavaScript-like syntax):
db.users.find({ age: { $gt: 21 } })

// Redis (uses command-based syntax):
HGET user:1000 email
SET session:token "abc123"

NoSQL databases are particularly efficient in handling large volumes of unstructured data. A prime example is the architecture of modern social media platforms, where MongoDB enables storage of a user's profile, posts, responses, and activity in a single document, thereby optimizing data retrieval performance.

NoSQL vs SQL: Relational and Non-Relational Databases

The evolution of NoSQL databases has paralleled the growing complexity of technological and business needs. The modern digital world, which generates terabytes of data every second, necessitated new data processing approaches. As a result, two fundamentally different data management philosophies have emerged:

  1. Relational approach, focused on data integrity and reliability
  2. NoSQL approach, prioritizing adaptability and scalability

Each concept is grounded in its own core principles, which define its practical applications.

Relational systems adhere to ACID principles:

  • Atomicity ensures that transactions are all-or-nothing.
  • Consistency guarantees that data remains valid throughout.
  • Isolation keeps concurrent transactions from interfering.
  • Durability ensures that once a transaction is committed, it remains so.

NoSQL systems follow the BASE principles:

  • Basically Available – the system prioritizes continuous availability.
  • Soft state – the system state may change over time.
  • Eventually consistent – consistency is achieved eventually, not instantly.

Key Differences:

Aspect

Relational Databases

NoSQL Databases

Data Organization

Structured in predefined tables and schemas

Flexible format, supports semi-structured/unstructured data

Scalability

Vertical (via stronger servers)

Horizontal (adding more nodes to the cluster)

Data Integrity

Maintained at the DBMS core level

Managed at the application level

Performance

Efficient for complex transactions

High performance in basic I/O operations

Data Storage

Distributed across multiple interrelated tables

Groups related data into unified blocks/documents

These fundamental differences define their optimal use cases:

  • Relational systems are irreplaceable where data precision is critical (e.g., financial systems).
  • NoSQL solutions excel in processing high-volume data flows (e.g., social media, analytics platforms).

Key Features and Advantages of NoSQL

Most NoSQL systems are open source, allowing developers to explore and modify the core system without relying on expensive proprietary software.

Schema Flexibility

One of the main advantages of NoSQL is its schema-free approach. Unlike relational databases, where altering the schema often requires modifying existing records, NoSQL allows the dynamic addition of attributes without reorganizing the entire database.

// MongoDB: Flexible schema supports different structures in the same collection
db.users.insertMany([
  { name: "Emily", email: "emily@email.com" },
  { name: "Maria", email: "maria@email.com", phone: "+35798765432" },
  { name: "Peter", social: { twitter: "@peter", facebook: "peter.fb" } }
])

Horizontal Scalability

NoSQL databases employ a fundamentally different strategy for boosting performance. While traditional relational databases rely on upgrading a single server, NoSQL architectures use distributed clusters. Performance is improved by adding nodes, with workload automatically balanced across the system.

Sharding and Replication

NoSQL databases support sharding—a method of distributing data across multiple servers. Conceptually similar to RAID 0 (striping), sharding enables:

  • Enhanced system performance
  • Improved fault tolerance
  • Efficient load distribution

High Performance

NoSQL systems offer exceptional performance due to optimized storage mechanisms and avoidance of resource-heavy operations like joins. They perform best in scenarios such as:

  • Basic read/write operations
  • Large-scale data management
  • Concurrent user request handling
  • Unstructured data processing

Handling Unstructured Data

NoSQL excels in working with:

  • Large volumes of unstructured data
  • Heterogeneous data types
  • Rapidly evolving data structures

Support for Modern Technologies

NoSQL databases integrate well with:

  • Cloud platforms
  • Microservice architectures
  • Big Data processing systems
  • Modern development frameworks

Cost Efficiency

NoSQL solutions can be cost-effective due to:

  • Open-source licensing
  • Efficient use of commodity hardware
  • Scalability using standard servers
  • Reduced administrative overhead

Main Types of NoSQL Databases

In modern distributed system development, several core types of NoSQL solutions are distinguished, each with a mature ecosystem and strong community support.

Document-Oriented Databases

Document-based systems are the most mature and widely adopted type of NoSQL databases. MongoDB, the leading technology in this segment, is the benchmark example of document-oriented data storage architecture.

Data Storage Principle

In document-oriented databases, information is stored as documents grouped into collections. Unlike relational databases, where data is distributed across multiple tables, here, all related information about an object is contained within a single document.

Example of a user document with orders:

{
  "_id": ObjectId("507f1f77bcf86cd799439011"),
  "user": {
    "username": "stephanie",
    "email": "steph@example.com",
    "registered": "2024-02-01"
  },
  "orders": [
    {
      "orderId": "ORD-001",
      "date": "2024-02-02",
      "items": [
        {
          "name": "Phone",
          "price": 799.99,
          "quantity": 1
        }
      ],
      "status": "delivered"
    }
  ],
  "preferences": {
    "notifications": true,
    "language": "en"
  }
}

Basic Operations with MongoDB

// Insert a document
db.users.insertOne({
  username: "stephanie",
  email: "steph@example.com"
})

// Find documents
db.users.find({ "preferences.language": "en" })

// Update data
db.users.updateOne(
  { username: "stephanie" },
  { $set: { "preferences.notifications": false }}
)

// Delete a document
db.users.deleteOne({ username: "stephanie" })

Advantages of the Document-Oriented Approach

Flexible Data Schema

  • Each document can have its own structure
  • Easy to add new fields
  • No need to modify the overall database schema

Natural Data Representation

  • Documents resemble programming objects
  • Intuitive structure
  • Developer-friendly

Performance

  • Fast retrieval of complete object data
  • Efficient handling of nested structures
  • Horizontal scalability

Working with Hierarchical Data

  • Naturally stores tree-like structures
  • Convenient nested object representation
  • Effective processing of complex structures

Use Cases

The architecture is particularly effective in:

  • Developing systems with dynamically evolving data structures
  • Processing large volumes of unstandardized data
  • Building high-load distributed platforms

Typical Use Scenarios

  • Digital content management platforms
  • Distributed social media platforms
  • Enterprise content organization systems
  • Event aggregation and analytics services
  • Complex analytical platforms

Key-Value Stores

Among key-value stores, Redis (short for Remote Dictionary Server) holds a leading position in the NoSQL market. A core architectural feature of this technology is that the entire data set is stored in memory, ensuring exceptional performance.

Working Principle

The architecture of key-value stores is based on three fundamental components for each data record:

  • Unique key (record identifier)
  • Associated data (value)
  • Optional TTL (Time To Live) parameter

Data Types in Redis

# Strings
SET user:name "Stephanie"
GET user:name

# Lists
LPUSH notifications "New message"
RPUSH notifications "Payment received"

# Sets
SADD user:roles "admin" "editor"
SMEMBERS user:roles

# Hashes
HSET user:1000 name "Steph" email "steph@example.com"
HGET user:1000 email

# Sorted Sets
ZADD leaderboard 100 "player1" 85 "player2"
ZRANGE leaderboard 0 -1

Key Advantages

High Performance

  • In-memory operations
  • Simple data structure
  • Minimal overhead

Storage Flexibility

  • Support for multiple data types
  • Ability to set data expiration
  • Atomic operations

Reliability

  • Data persistence options
  • Master-slave replication
  • Clustering support

Typical Use Scenarios

Caching

# Cache query results
SET "query:users:active" "{json_result}"
EXPIRE "query:users:active" 3600  # Expires in one hour

Counters and Rankings

# Increase view counter
INCR "views:article:1234"

# Update ranking
ZADD "top_articles" 156 "article:1234"

Message Queues

# Add task to queue
LPUSH "task_queue" "process_order:1234"

# Get task from queue
RPOP "task_queue"

Redis achieves peak efficiency when deployed in systems with intensive operational throughput, where rapid data access and instant processing are critical. A common architectural solution is to integrate Redis as a high-performance caching layer alongside the primary data store, significantly boosting the overall application performance.

Graph Databases

Graph DBMS (Graph Databases) stand out among NoSQL solutions due to their specialization in managing relationships between data entities. In this segment, Neo4j has established a leading position thanks to its efficiency in handling complex network data structures where relationships between objects are of fundamental importance.

Core Components

Nodes

  • Represent entities
  • Contain properties
  • Have labels

Relationships

  • Connect nodes
  • Are directional
  • Can contain properties
  • Define the type of connection

Example of a Graph Model in Neo4j

// Create nodes
CREATE (anna:Person { name: 'Anna', age: 30 })
CREATE (mary:Person { name: 'Mary', age: 28 })
CREATE (post:Post { title: 'Graph Databases', date: '2024-02-04' })

// Create relationships
CREATE (anna)-[:FRIENDS_WITH]->(mary)
CREATE (anna)-[:AUTHORED]->(post)
CREATE (mary)-[:LIKED]->(post)

Typical Queries

// Find friends of friends
MATCH (person:Person {name: 'Anna'})-[:FRIENDS_WITH]->(friend)-[:FRIENDS_WITH]->(friendOfFriend)
RETURN friendOfFriend.name

// Find most popular posts
MATCH (post:Post)<-[:LIKED]-(person:Person)
RETURN post.title, count(person) as likes
ORDER BY likes DESC
LIMIT 5

Key Advantages

Natural Representation of Relationships

  • Intuitive data model
  • Efficient relationship storage
  • Easy to understand and work with

Graph Traversal Performance

  • Fast retrieval of connected data
  • Efficient handling of complex queries
  • Optimized for recursive queries

Practical Applications

Social Networks

// Friend recommendations
MATCH (user:Person)-[:FRIENDS_WITH]->(friend)-[:FRIENDS_WITH]->(potentialFriend)
WHERE user.name = 'Anna' AND NOT (user)-[:FRIENDS_WITH]->(potentialFriend)
RETURN potentialFriend.name

Recommendation Systems

// Recommendations based on interests
MATCH (user:Person)-[:LIKES]->(product:Product)<-[:LIKES]-(otherUser)-[:LIKES]->(recommendation:Product)
WHERE user.name = 'Anna' AND NOT (user)-[:LIKES]->(recommendation)
RETURN recommendation.name, count(otherUser) as frequency

Routing

// Find shortest path
MATCH path = shortestPath(
  (start:Location {name: 'A'})-[:CONNECTS_TO*]->(end:Location {name: 'B'})
)
RETURN path

Usage Highlights

  • Essential when working with complex, interrelated data structures
  • Maximum performance in processing cyclic and nested queries
  • Enables flexible design and management of multi-level relationships

Neo4j and similar platforms for graph database management show exceptional efficiency in systems where relationship processing and deep link analysis are critical. These tools offer advanced capabilities for managing complex network architectures and detecting patterns in structured sets of connected data.

Columnar Databases

The architecture of these systems is based on column-oriented storage of data, as opposed to the traditional row-based approach. This enables significant performance gains for specialized queries. Leading solutions in this area include ClickHouse and HBase, both recognized as reliable enterprise-grade technologies.

How It Works

Traditional (row-based) storage:

Row1: [id1, name1, email1, age1]  
Row2: [id2, name2, email2, age2]

Column-based storage:

Column1: [id1, id2]  
Column2: [name1, name2]  
Column3: [email1, email2]  
Column4: [age1, age2]

Key Characteristics

Storage Structure

  • Data is grouped by columns
  • Efficient compression of homogeneous data
  • Fast reading of specific fields

Scalability

  • Horizontal scalability
  • Distributed storage
  • High availability

Example Usage with ClickHouse

-- Create table
CREATE TABLE users (
    user_id UUID,
    name String,
    email String,
    registration_date DateTime
) ENGINE = MergeTree()
ORDER BY (registration_date, user_id);

-- Insert data
INSERT INTO users (user_id, name, email, registration_date)
VALUES (generateUUIDv4(), 'Anna Smith', 'anna@example.com', now());

-- Analytical query
SELECT 
    toDate(registration_date) as date,
    count(*) as users_count
FROM users 
GROUP BY date
ORDER BY date;

Key Advantages

Analytical Efficiency

  • Fast reading of selected columns
  • Optimized aggregation queries
  • Effective with large datasets

Data Compression

  • Superior compression of uniform data
  • Reduced disk space usage
  • I/O optimization

Typical Use Cases

Big Data

-- Log analysis with efficient aggregation
SELECT 
    event_type,
    count() as events_count,
    uniqExact(user_id) as unique_users
FROM system_logs 
WHERE toDate(timestamp) >= '2024-01-01'
GROUP BY event_type
ORDER BY events_count DESC;

Time Series

-- Aggregating metrics by time intervals
SELECT 
    toStartOfInterval(timestamp, INTERVAL 5 MINUTE) as time_bucket,
    avg(cpu_usage) as avg_cpu,
    max(cpu_usage) as max_cpu,
    quantile(0.95)(cpu_usage) as cpu_95th
FROM server_metrics
WHERE server_id = 'srv-001'
    AND timestamp >= now() - INTERVAL 1 DAY
GROUP BY time_bucket
ORDER BY time_bucket;

Analytics Systems

-- Advanced user statistics
SELECT 
    country,
    count() as users_count,
    round(avg(age), 1) as avg_age,
    uniqExact(city) as unique_cities,
    sumIf(purchase_amount, purchase_amount > 0) as total_revenue,
    round(avg(purchase_amount), 2) as avg_purchase
FROM user_statistics
GROUP BY country
HAVING users_count >= 100
ORDER BY total_revenue DESC
LIMIT 10;

Usage Highlights

  • Maximum performance in systems with read-heavy workloads
  • Proven scalability for large-scale data processing
  • Excellent integration in distributed computing environments

Columnar database management systems show exceptional efficiency in projects requiring deep analytical processing of large datasets. This is particularly evident in areas such as enterprise analytics, real-time performance monitoring systems, and platforms for processing timestamped streaming data.

Full-Text Databases (OpenSearch)

The OpenSearch platform, built on the architectural principles of Elasticsearch, is a comprehensive ecosystem for high-performance full-text search and multidimensional data analysis. This solution, designed according to distributed systems principles, stands out for its capabilities in data processing, intelligent search, and the creation of interactive visualizations for large-scale datasets.

Key Features

Full-Text Search

// Search with multilingual support
GET /products/_search
{
  "query": {
    "multi_match": {
      "query": "wireless headphones",
      "fields": ["title", "description"],
      "type": "most_fields"
    }
  }
}

Data Analytics

// Aggregation by categories
GET /products/_search
{
  "size": 0,
  "aggs": {
    "popular_categories": {
      "terms": {
        "field": "category",
        "size": 10
      }
    }
  }
}

Key Advantages

Efficient Search

  • Fuzzy search support
  • Result ranking
  • Match highlighting
  • Autocomplete functionality

Analytical Capabilities

  • Complex aggregations
  • Statistical analysis
  • Data visualization
  • Real-time monitoring

Common Use Cases

E-commerce Search

  • Product search
  • Faceted navigation
  • Product recommendations
  • User behavior analysis

Monitoring and Logging

  • Metrics collection
  • Performance analysis
  • Anomaly detection
  • Error tracking

Analytical Dashboards

  • Data visualization
  • Business metrics
  • Reporting
  • Real-time analytics

OpenSearch is particularly effective in projects that require advanced search and data analytics. At Hostman, OpenSearch is available as a managed service, simplifying integration and maintenance.

When to Choose NoSQL?

The architecture of various database management systems has been developed with specific use cases in mind, so choosing the right tech stack should be based on a detailed analysis of your application's requirements.In modern software development, a hybrid approach is becoming increasingly common, where multiple types of data storage are integrated into a single project to achieve maximum efficiency and extended functionality.

NoSQL systems do not provide a one-size-fits-all solution. When designing your data storage architecture, consider the specific nature of the project and its long-term development strategy.

Choose NoSQL databases when the following matter:

Large-scale Data Streams

  • Efficient handling of petabyte-scale storage
  • High-throughput read and write operations
  • Need for horizontal scalability

Dynamic Data Structures

  • Evolving data requirements
  • Flexibility under uncertainty

Performance Prioritization

  • High-load systems
  • Real-time applications
  • Services requiring high availability

Unconventional Data Formats

  • Networked relationship structures
  • Time-stamped sequences
  • Spatial positioning

Stick with Relational Databases when you need:

Guaranteed Integrity

  • Banking transactions
  • Electronic health records
  • Mission-critical systems

Complex Relationships

  • Multi-level data joins
  • Complex transactional operations
  • Strict ACID compliance

Immutable Structure

  • Fixed requirement specifications
  • Standardized business processes
  • Formalized reporting systems

Practical Recommendations

Hybrid Approach

// Using Redis for caching
// alongside PostgreSQL for primary data
const cached = await redis.get(`user:${id}`);
if (!cached) {
    const user = await pg.query('SELECT * FROM users WHERE id = $1', [id]);
    await redis.set(`user:${id}`, JSON.stringify(user));
    return user;
}
return JSON.parse(cached);

Gradual Transition

  • Start with a pilot project
  • Test performance
  • Evaluate support costs

Decision-Making Factors

Technical Aspects

  • Data volume
  • Query types
  • Scalability requirements
  • Consistency model

Business Requirements

  • Project budget
  • Development timeline
  • Reliability expectations
  • Growth plans

Development Team

  • Technology expertise
  • Availability of specialists
  • Maintenance complexity
Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support