Sign In
Sign In

Nextcloud vs Owncloud: What to Choose and How Much Does It Cost?

Nextcloud vs Owncloud: What to Choose and How Much Does It Cost?
Hostman Team
Technical writer
Infrastructure

Let’s talk about Nextcloud and ownCloud. What are they supposed to do and why might your team want to use one. Here is a detailed breakdown of the most popular and functional progressive cloud services.

What are Nextcloud and ownCloud?

Basically, both applications are digital coworking services — online platforms for working together as a team on any project while having access to one filing system and additional software products.

The idea behind these products lies in cooperative working without limitations. Nextcloud and ownCloud both help teams to stay connected, edit the same files in parallel, and get the job done faster.

Additionally, it gives control of email to the entire team and not just one teammate. Edit rich-text documents, talk to each other using fully-fledged messengers and call-apps bundled with Nextcloud.

But the unique feature of these apps is the ability to create a private space and work closely with team members.

There are many digital products that make it possible for different people to edit the same files (Evernote, Google Docs, Dropbox, Office 365, etc.) but none of them respects your privacy. With powerful products made by Microsoft, Apple, Amazon, etc. you end up giving them a lot of your personal data. Since ownCloud and Nextcloud are open-source projects you stay in control. These services allow you to avoid corporations while at the same time gaining access to their software products. That’s why both ownCloud and Nextcloud are extremely popular.

What is Nextcloud used for

Nextcloud is a cloud service that includes many tools for working collaboratively. The main member of the Nextcloud family is Nextcloud Hub. This is software that harnesses every tool your team needs to communicate faster, work together and remain aware of any changes to the project.

0f846f6126b771e5c17d5ce95cefe84b

Nextcloud Files

This is an online filing system that can be accessed by anyone from your team via a web browser or mobile application. It looks like and feels like Google Drive but it’s a private one.

Nextcloud Talk

This one resembles Zoom or Discord. It’s a fully functional platform to communicate with your teammates, share files, and set up phone conferences using mobile devices or a web interface.

Nextcloud Groupware

This is a system of multiple applications including a calendar to prepare a shared schedule, email clients from one email inbox, and enjoy full control of a shared contact list.

Other tools

There are also modules to connect FTP, SharePoint, and other types of servers, and the Nextcloud Flow interface helps to optimize repetitive tasks your team used to do.

How much does Nextcloud cost?

Nextcloud is an open-source project and you can use the distributive for free. But to do this, you’ll have to set it up yourself on your server without the help of specialists.

There’s also Nextcloud Enterprise — a derived project that aims to help large corporations and small businesses access all the tools that Nextcloud offers. It has three plans:

  1. Basic — this one includes a maintenance lifecycle of one year, faster tech support reaction time, fast deployment of security patches, and the opportunity to integrate the system with Outlook software. It costs 36 euros per user per year for teams of one hundred or fewer teammates and 28.50 euros per user for teams of two hundred or more teammates.

  2. Standard — this one includes all the features that you can find in the basic plan but also: branding (helps to reconfigure the whole system to be more consistent with corporate identity), additional optional components like Collabora Online Office, HANCOM Works, Nextcloud Groupware, and more. Costs 65 euros per year for small teams and 48.50 for large ones.

  3. Premium — gives you all the add-ons you might want to install including Microsoft Office Online. It also includes technical support which provides immediate help 24/7. This costs 95 euro per user per year for small teams or 74.50 euros per year for bigger ones.

But you can use hosts like Hostman that offer preinstalled Nextcloud with all the basic functions.

How to setup Nextcloud server

4f3c0e699fc737e7f9c3d4cb2a63c26c

System requirements

  • You should use one of the modern and up-to-date Linux distributives like Ubuntu 20.04, RHEL 8, Debian 10, CentOS 8, etc.

  • On your server install MySQL, MariaDB, Oracle Database or PostgreSQL. NoSQL databases are not supported.

  • The machine on which Nextcloud is deployed should run an Apache or nginx web server (the first one is recommended).

  • It is better to have a modern version of PHP installed.

Installing Nextcloud on Ubuntu Linux

After preparing all the prerequisites listed in the previous part of the article you should visit the official site of the cloud service and download the Nextcloud Server package there.

You’ll have a zip archive that you must extract to the directory named "Nextcloud".

Configure Apache server

You need to create a configuration file /etc/apache2/sites-available/nextcloud.conf.

Inside this file put the following, changing the paths to ones that fit your server preferences:

Alias /nextcloud "/var/www/nextcloud/"
Require all granted
AllowOverride All
Options FollowSymLinks MultiViews
Dav off

When the server is set up and running you should visit http://localhost/nextcloud and move forward by following the installer’s commands.

What is ownCloud used for?

642d00d45d38516ebf6af4329d10d1c4

ownCloud is quite different to Nextcloud. It is actually a platform which branched away from Nextcloud some time ago. The main project was launched first and was then used as a collaborative online tool much earlier than Nextcloud. This is why ownCloud is likewise considered a safe and functional way to store data and grant access to teammates.

ownCloud respects rules such as GDPR (General Data Protection Regulation), LGPD, CCFR (Cloud Computing Regulatory Framework), HIPAA and CCPA. These regulations are designed to protect your data from misuse.

As for ownCloud features, developers highlight the following:

  • Fully functional mobile applications that are interchangeable with their desktop counterparts.

  • Automation support on iOS and new macOS versions.

  • Advanced state-of-the-art files encryption system.

  • Communication mechanisms to stay in touch with your team.

  • Document scanner integrated into iOS for iPhone and iPad.

  • Ability to search through the text inside files stored in ownCloud.

How much does ownCloud cost?

There are 4 different plans for ownCloud. 2 for self-hosted servers and 2 for their proprietary online services.

  • Standard — gives access to the customer portal, lets you use mobile apps, activate sync, and share files. Costs 5 euro per year per user. The team should comprise at least 25 teammates.

  • Enterprise — extended plan that includes Enterprise functions. Costs 12 euros annually per user. The team should consist of at least 25 teammates.

  • For Teams — server hosted on ownCloud’s site in Germany. Comes with 1000 GB of cloud storage, 200 GB for every new user, 180 days of data recovery, multifactor authentication, firewall and other useful features. Costs 13 euro per user. Paid annually.

  • For Single Users — same as "For Teams" but for smaller groups of users.

How to setup ownCloud server?

System requirements

For best performance developers of ownCloud recommend using:

  • Ubuntu 20.04 LTS

  • MariaDB 10+

  • Apache 2.4 with prefork and mod_php

  • PHP 7.4

Installing ownCloud on Ubuntu Linux

You have to create helper script with these commands inside:

FILE="/usr/local/bin/occ"
/bin/cat <$FILE

#!/bin/bash
cd /var/www/owncloud
sudo -E -u www-data /usr/bin/php /var/www/owncloud/occ "\$@"
EOM

After that you may download the official ownCloud distributive from its website and install it by using command:

occ maintenance:install \
--database "mysql" \
--database-name "owncloud" \
--database-user "owncloud" \
--database-pass "password" \
--admin-user "admin" \
--admin-pass "admin"

Configure Apache server

You should set up a server and Virtual Host Configuration. Then you must enable created configuration and change database preferences to correspond with parameters of other server components. Instructions for doing this correctly can be found within ownCloud’s documentation articles.

Nextcloud and ownCloud on Windows and any other platform

Unfortunately, there’s no way to install Nextcloud or ownCloud as a server on any platform besides Linux or FreeBSD. That means that the core of these software products must be deployed on Unix-based OS (macOS is also Unix-based but can’t serve as a server for Nextcloud or ownCloud either). If you want to set up a server on Windows or macOS you should consider alternative cloud services or use virtual machines.

You might know that a lot of developers that use Windows as the main operating system actually develop in Linux environments using Windows Subsystems for Linux. It is a kind of virtual PC inside your PC that runs proper Linux distribution. And since it is a real Linux OS you can deploy Nextcloud there as you would do with Ubuntu. Just visit the Windows Store and find the last version of Ubuntu there. Or download applications like VirtualBox or VMWare.

But if you do not want to deploy Nextcloud or ownCloud but get an app to connect to an already functioning cloud service’s instance you might want to head to the official website of the service and download the client there. Both applications offer clients for Windows, Linux, macOS, iOS, and Android. The installation process depends on the chosen platform and is usually not so different from installing any other app.

Nextcloud and ownCloud on Raspberry Pi

In order to install one of the cloud services as a server on your mini-computer, it should be running Linux or FreeBSD. The process of installation is not really different from installing the same software on any Unix-based machine that supports either Nextcloud or ownCloud.

What is better: Nextcloud or ownCloud?

Nextcloud is a good all-in-one solution for most users. It is great for those teams that want to access a lot of useful tools without setting up too many things.

Of course, it is great at working with files. Sharing, coediting, version controlling, etc. But Nextcloud is much more than a remote filing system.

Nextcloud Enterprise helps to deploy a full-fledged cooperative workspace with incredible software components like Nextcloud Talk and Nextcloud Groupware. So your team doesn’t need to use third-party applications to address any challenges that appear before them. At any rate, it is more powerful software that your team can get on much better terms.

In contrast to Nextcloud, ownCloud is focused on working with files only. There are many tools that help teams around the world to handle their documents, photos, presentations, and arts seamlessly. That’s why you won’t find services like Nexcloud Hub here. ownCloud is all about small features created to improve your file sharing and collaborative editing capabilities.

But at the same time, it is an open-source platform with a distinguished API that can be used to create powerful plugins broadly extending the application’s feature set. It means that you can pretty much copy most of the Nextcloud features to ownCloud, and they will be aligned.

Also, it might brag about much faster tech support (which responds within two hours when Nextcloud’s one may make you wait for 2 days), freely available documentation, community edition Windows Desktop Client, Storage certification, etc.

The most lucrative and simple way to deploy Nextcloud

We already mentioned Hostman as a good host to deploy Nextcloud, so let’s get a bit deeper.

Hostman has a marketplace — an online shop with a series of one-click-deploy services. You can find their Minecraft gaming server, different databases, analytics tools, and Nextcloud of course.

The simplest way to start working with this cloud service is to visit its official page in Hostsman’s marketplace and click on the "Launch Nextcloud now" button.

It will create a server with Nextcloud preinstalled and set up. You won’t need to bother about the installation procedure and prerequisites. Everything will be ready for basic configuration and launching.

This service costs 19 dollars per month and if you want to try it our first Hostman offers a 7 day free trial without any restrictions.

Summary

As you see, both Nextcloud and ownCloud are functional and useful instruments to set up cooperative workspaces online. Moreover, you now know what tool to choose and how to make the whole process incomparably beneficial for your team. Don’t forget about Nextcloud system requirements and the security of shared files.

Infrastructure

Similar

Infrastructure

VMware Cloud Director: What It Is and How to Use It

VMware Cloud Director (formerly vCloud Director, or “vCD”) is a modern solution for cloud providers, mainly designed for building virtual data centers on top of physical infrastructure. The platform allows combining all of a data center’s physical resources into virtual pools, which are then offered to end users on a rental basis. It integrates tightly with VMware’s own technologies: vCenter and vSphere. vCenter is a set of tools for managing virtual infrastructure, and vSphere is the virtualization platform for cloud computing. Key Capabilities of VMware Cloud Director Creation of virtual data centers (vDCs) with full isolation of virtual services and resources. Migration of virtual machines (VMs) between clouds, and self-deployment of OVF templates. Snapshots and rollback of VM changes. Creation of isolated and routable networks with external access. Integrated, tiered storage with load balancing between virtual machines. Network security: perimeter protection and firewalling. Encryption of access to cloud resources to secure the virtual infrastructure. Unified authentication across all VMware services (single sign-on) so users don’t need to re-authenticate. Deployment of multi‑tier applications as ready-made virtual appliances, with VMs and OS images. Allocation of isolated resources for different departments within a single virtual structure. How VMware Cloud Director Works VMware Cloud Director uses a multi-tenant model. Rather than building a dedicated environment for every customer, it creates a shared virtual environment. This reduces infrastructure maintenance costs massively: for large cloud providers, savings can reach hundreds of thousands or even millions of dollars per year, which in turn lowers the rental cost for end users. Resource consumption model: Using vCenter and vSphere, the provider aggregates physical resources into a shared pool called a “virtual data center” (vDC). From that pool, resources are allocated into Org vDCs (Organizational Virtual Data Centers), which are the fundamental compute units consumed by customers. VMware Cloud Director syncs with the vSphere database to request and allocate the required amount of resources. Org vDCs are containers of VMs and can be configured independently. Customers can order different numbers of Org vDCs for different purposes, e.g., one Org vDC for marketing, another for finance, a third for HR. At the same time, interconnectivity can be established between these Org vDCs, forming a large, virtual private data center. It’s also possible to combine Org vDCs into multiple networks. Additionally, within those networks, one can create vApps (virtual applications) made up of VMs, each with their own gateways to connect to Org vDCs. This setup allows building virtual networks of any architecture, isolated or routable, to match various business needs. When such a network is created, the provider assigns a user from the customer organization to the role of network administrator. A unique URL is also assigned to each organization. The administrator is responsible for adding or removing users, assigning roles and resources, creating network services, and more. They also manage connections to services provided by the cloud provider. For instance, VM templates or OVF/OVA modules, which simplify backup and VM migration. Resource Allocation Models in VMware Cloud Director VMware Cloud Director supports several models for allocating resources, depending on how you want to manage usage: Allocation Pool: You set resource limits and also define a guaranteed percentage of the shared pool for a user. This  model is good when you want predictable costs but don’t need full reservation. Pay-As-You-Go: No guaranteed resources, only consumption-based; ideal if usage is variable. The model is flexible and fits users who want to grow gradually. Reservation Pool: You reserve all available resources; user requests are limited only by what the provider’s data center can supply. Reservation Pool is suited for organizations that need fixed performance and large infrastructure. Useful Features of VMware Cloud Director Here are several powerful features that optimize resource usage, routing, and tenant isolation: Delegation of Privileges You can assign network administrators from the users of each organization. These admins get broad rights: they can create and manage VMs, deploy OVF/OVA templates, manage VM migration, set up isolated/routable networks, balance VM workloads, and more. Monitoring and Analytics Cloud Director includes a unified system for monitoring and analyzing VM infrastructure: VMs, storage, networks, memory. All data is logged and visualized in a dedicated dashboard, making it easier to detect and resolve problems proactively. Networking Features Networking in vCloud Director supports dynamic routing, distributed firewalls, hybrid cloud integration, and flexible traffic distribution. Many of these features are now standard in the newer versions of Cloud Director. If you don’t already have some of them, you may need to upgrade your NSX Edge and convert it to an Advanced Gateway in the UI. Dynamic routing improves reliability by eliminating manual route configuration. You can also define custom routing rules based on IP/MAC addresses or groups of servers. With NSX Edge load balancing, incoming traffic can be distributed evenly across pools of VMs selected by IP, improving scalability and performance. Access Control and More You can create custom user roles in the Cloud Director UI to control access tailored to organizational needs. VMs can be pinned to specific ESXi host groups (affinity rules), which helps with licensing or performance. If Distributed Resource Scheduler (DRS) is supported, Cloud Director can automatically balance VMs across hosts based on load. Additional useful features include automatic VM discovery and import, batch updating of server cluster cells, and network migration tools.
25 November 2025 · 5 min to read
Infrastructure

Why Developers Use the Cloud: Capabilities and Advantages

Today, up to 100% of startups begin operating based on providers offering services ranging from simple virtual hosting to dedicated servers. In this article, we will examine the advantages of cloud computing that have led to its dominance over the “classic” approach of having a dedicated server in a separate room. Cloud Use Cases Typical scenarios for using cloud technologies include: Full migration of a business application to a remote server. For example, enterprise resource planning or accounting software. These applications support operation via remote desktop interfaces, thin clients, or web browsers. Migration of specific business functions. Increasingly, archival copies are stored in the cloud while software continues running locally. Alternatively, a backup SQL server node can be hosted remotely and connected in case the local server fails. Implementation of new services. Businesses are increasingly adopting automated systems for data collection and analytics. For example, Business Intelligence (BI) technologies have become popular, helping generate current and comparative reports. Interaction between local and cloud environments. Hybrid services are well established in large networks. For example, a retail store may operate a local network with an on-site server, receive orders from an online store, and send requests back to transport companies, and so on.This setup allows offline operation even if the internet is fully disconnected: processing sales, receiving shipments, conducting inventories, with automatic synchronization once connectivity is restored. These examples represent foundational scenarios, giving developers plenty of room to innovate. This is one reason more and more coders are attracted to the cloud. Advantages Now let’s examine the advantages and disadvantages of cloud computing. Yes, the technology has some drawbacks, including dependency on internet bandwidth and somewhat higher requirements for IT specialists. Experienced professionals may need retraining, whereas younger personnel who learn cloud technologies from the start do not face such challenges. Speed Software development often requires significant time and effort for application testing. Applications must be verified across multiple platforms, resolutions, and device types. Maintaining local machines dedicated to testing is inefficient. Cloud computing solves this by enabling rapid deployment of virtually any environment, isolated from other projects, ensuring it does not interfere with team development. High deployment speed and access to cloud services also encourage IT startups to launch almost “from scratch,” with minimal resource investment. The advantages of cloud services are especially critical when development volumes periodically expand. Purchasing hardware consumes a developer’s most valuable resource: time. In the cloud, selecting a plan takes just a few minutes, and the setup of a remote host for specific tasks can begin immediately. Hardware resources on the remote server, such as CPU cores, memory, and storage, can also be easily adjusted. Security Building a private server is expensive. Besides the powerful machines, you will need backup power and internet lines, a separate room with air conditioning and fire protection, and security personnel to prevent unauthorized access. Cloud providers automatically provide all these features at any service level. Other security advantages include: Easier identity and access management (IAM). Higher reliability for continuous business operations. Protection against theft or seizure of storage devices containing sensitive data. On a cloud server, users cannot simply plug in a USB drive to download files. Data does not reside on local machines, and access is controlled according to company policy. Users only see what their role allows. This approach reduces the risk of viruses and accidental or intentional file deletion. Antivirus software runs on cloud platforms, and backups are automatically maintained. Cost Efficiency Purchasing server hardware is a major budget burden, even for large corporations. Before the cloud boom, this limited IT development. Modern developers often need test environments with unique infrastructure, which may only be required temporarily. Buying hardware for a one-time test is inefficient. Short-term rental of cloud infrastructure allows developers to complete tasks without worrying about hardware maintenance. Equipment costs directly impact project pricing and developer competitiveness, so cloud adoption is advantageous. Today, most software is developed for cloud infrastructure, at least with support for it. Maintenance, storage, and disposal costs for IT equipment also add up. Hardware becomes obsolete even if unused. This makes maintaining developer workstations for “simple” desktop software costly. Offloading this to a cloud provider allows developers to always work with the latest infrastructure. Convenience Another cloud advantage is ease of use. Cloud platforms simplify team collaboration and enable remote work. The platform is accessible from any device: desktop, laptop, tablet, or smartphone, allowing work from home, the office, or even a beach in Bali. Clouds have become a foundation for remote work, including project management. Other conveniences include: Easy client demonstrations: Developers can grant access and remotely show functionality, or run it on the client’s office computer without installing additional components. Quick deployment of standard solutions: Setting up an additional workstation takes only a few minutes, from registering a new user to their trial login. New developers can quickly join ongoing tasks. Easy role changes: In dynamic teams, personnel often switch between projects. Access to project folders can be revoked with a few clicks once a task is completed. This also applies to routine work: adding new employees, blocking access for former staff, or reassigning personnel. A single administrative console provides an overview of activity and simplifies version tracking, archiving, and rapid deployment during failures. Stability Another factor affecting developer success is the speed of task completion. Beyond rapid deployment, system stability is critical. On local machines, specialists depend on hardware reliability. A failure could delay project timelines due to hardware replacement and configuration. Moving software testing to the cloud enhances the stability of local IT resources, particularly in hybrid systems. Cloud data centers provide Tier 3 minimum reliability (99.982% uptime) without additional client investment. Resources are pre-provisioned and ready for use according to the chosen plan. Development, testing, and operation are typically conducted within a single provider’s platform, in an environment isolated from client services. Conclusion Cloud technologies offer numerous advantages with relatively few drawbacks. Businesses and individual users value these benefits, and developers are encouraged to follow trends and create new, in-demand products. Virtually all commerce has migrated to the cloud, and industrial sectors, especially those with extensive branch networks and remote facilities, are also adopting cloud solutions.
25 November 2025 · 6 min to read
Infrastructure

PostgreSQL vs MySQL: Which Database Is Right for Your Business?

PostgreSQL and MySQL are among the most popular relational databases. In this article, we will examine the functional differences between them and compare their performance so that you can choose the database that is suitable for your business. PostgreSQL vs MySQL Despite the increasing similarity in features between PostgreSQL and MySQL, important differences remain. For example, PostgreSQL is better suited for managing large and complex databases, while MySQL is optimal for website and online-application databases because it is oriented toward speed. This follows from the internal structure of these relational database systems, which we will examine. Data Storage in PostgreSQL and MySQL Like any other relational databases, these systems store data in tables. However, MySQL uses several storage engines for this, while PostgreSQL uses only a single storage engine. On one hand, this makes PostgreSQL more convenient, because MySQL’s engines read and write data to disk differently. On the other hand, MySQL offers greater flexibility in choosing a data engine. However, PostgreSQL has an advantage: its storage engine implements table inheritance, where tables are represented as objects. As a result, operations are performed using object-oriented functions. Support The SQL standard is over 35 years old, and only the developers of PostgreSQL aim to bring their product into full compliance with the standard. The developers of MySQL use a different approach: if a certain feature simplifies working with the system, it will be implemented even if it does not fully conform to the standard. This makes MySQL more user-friendly compared to PostgreSQL. In terms of community support, the number of MySQL developers still exceeds those working with PostgreSQL, but you can receive qualified help in both communities. In addition, many free guides and even books have been written about PostgreSQL, containing answers to most questions. It is also worth noting that both platforms are free, but MySQL has several commercial editions, which can sometimes lead to additional expenses. Programming Languages Both systems support a wide range of programming languages. Among the popular ones are C++, Java, Python, lua, and PHP. Therefore, a company’s development team will not face difficulties implementing features in either system. Operating Systems MySQL is a more universal system that runs on Windows, Linux, macOS, and several other operating systems. PostgreSQL was originally designed for Linux, but with the REST API interface, it becomes an equally universal solution that operates on any OS. Data Processing PostgreSQL provides more capabilities for data processing. For example, a cursor is used for moving through table data, and responses are written to the memory of the database server rather than the client, as in MySQL. PostgreSQL also allows building indexes simultaneously for several columns. It supports different index types, allowing work with multiple data types. This database also supports regular expressions in queries. However, new fields in PostgreSQL can only be added at the end of a table. Parallel data processing is better organized in PostgreSQL because the platform has a built-in implementation of MVCC (multiversion concurrency control). MVCC can also be supported in MySQL, but only if InnoDB is used. Concerning replication, PostgreSQL supports logical, streaming, and bidirectional replication, while MySQL supports circular replication as well as master-master and master-standby. Replication refers to copying data between databases located on different servers. PostgreSQL and MySQL: Performance Comparison Testing is fair only when comparing two clean, “out-of-the-box” systems. Indexed testing provides the following results: Insertion: PostgreSQL is more than 2.7× faster, processing a 400,000-record database in 5.5 seconds versus 15 seconds for MySQL. Inner join: PostgreSQL processes 400,000 records in 1.1 seconds, MySQL in 2.8 seconds: a gain of more than 2.5×. Indexed sorting: PostgreSQL processes the same number of records in 0.9 seconds, MySQL in 1.5 seconds. Grouping: For the same 400,000-record database, PostgreSQL achieves 0.35 seconds, MySQL 0.52 seconds. Indexed selection: PostgreSQL is 2× faster: 0.6 seconds vs. 1.2 seconds. When it comes to updating data, PostgreSQL’s update time increases gradually as the number of records grows, while MySQL processes them in roughly the same time, starting from 100,000 records. This is due to different data-storage implementations. Nevertheless, PostgreSQL holds a significant advantage over MySQL even with large data volumes: 3.5 seconds versus 9.5 seconds for 400,000 records—more than 2.7× faster. Without indexes, PostgreSQL also shows surprisingly high performance, processing a 400,000-record database in 1.3, 0.7, and 2.2 seconds for inner join, selection, and update operations, respectively. Thus, PostgreSQL delivers an average performance advantage of about 2× (2.06). Although MySQL was originally positioned as a high-performance platform, constant optimization by the PostgreSQL development team has resulted in greater efficiency. Advantages for Developers Here we consider only the unique features characteristic of each platform. Therefore, we will not discuss support for MVCC or ACID, as these features are present in both systems. From a developer’s perspective, MySQL is advantageous because it: Provides increased flexibility and is easily scalable, with more than ten storage engines based on different data-storage algorithms. Handles small read-oriented databases more efficiently (i.e., without frequent writes). Is easier to manage and maintain, because it requires less configuration and fewer preparatory steps before starting work. From a developer’s perspective, PostgreSQL is advantageous because it: Offers an object-oriented approach to data, enabling inheritance and allowing the creation of more complex table structures that do not fit the traditional relational model. Handles write-oriented databases better, including validation of written data. Supports object-oriented programming features, enabling work with NoSQL-style data, including XML and JSON formats. Can support databases without limitations on data volume. Some companies use PostgreSQL to run databases as large as several petabytes. PostgreSQL and MySQL Comparison For clarity, the main features of both systems can be presented in a table:   PostgreSQL MySQL Supported OS Solaris, Windows, Linux, OS X, Unix, HP-UX Solaris, Windows, Linux, OS X, FreeBSD Use cases Large databases with complex queries (e.g., Big Data) Lighter databases (e.g., websites and applications) Data types Supports advanced data types, including arrays and hstore Supports standard SQL data types Table inheritance Yes No Triggers Supports triggers for a wide range of commands Limited trigger support Storage engines Single (Storage Engine) Multiple As we can see, several features are implemented only in PostgreSQL. Both systems support ODBC, JDBC, CTE (common table expressions), declarative partitioning, GIS, SRS, window functions, and many other features. Conclusion Each system has its strengths. MySQL handles horizontal scaling well and is easier to configure and manage. However, if you expect database expansion or plan to work with different data types, it is better to consider implementing PostgreSQL in advance. Moreover, PostgreSQL is a fully free solution, so companies with limited budgets can use it without fear of unnecessary costs.
24 November 2025 · 6 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support