Sign In
Sign In

How to Use the Date Object in JavaScript

How to Use the Date Object in JavaScript
Kolawole Mangabo
Technical writer
JavaScript
15.10.2024
Reading time: 8 min

JavaScript provides a built-in Date object that simplifies working with dates and times. This tutorial will guide developers through the essential aspects of the Date object, including its creation, retrieval of date and time information, formatting, manipulation, and handling of time zones.

Introduction to JavaScript Date Object

The Date object in JavaScript represents datetime values, enabling developers to manage temporal data with ease. It is essential for tasks such as scheduling, time tracking, and logging. The Date object helps:

  • Represent specific date and time values, such as "2022-07-25T14:30:00.000Z".

  • Perform operations like retrieving, formatting, and manipulating dates and times.

  • Simplify date and time calculations across different time zones.

Understanding the basics of the Date object will help in managing time-sensitive data efficiently in web applications.

Creating a Date Object

Creating a Date object in JavaScript is straightforward. Here are the two common ways to achieve it: 

  • Using the current time

  • Using a timestamp

Creating a Date Object for the Current Time

The simplest way to create a Date object is by instantiating the current date and time:

const currentDate = new Date();
console.log(currentDate);

Image1

This creates an object representing the current date and time in the user's local timezone.

Creating a Date Object Using a Timestamp

You can also create a Date object from a specific timestamp (milliseconds since January 1, 1970):

const timestamp = 1643723400000;
const dateObject = new Date(timestamp);
console.log(dateObject);

Image3

This is useful for manipulating dates stored in timestamp format. Now that we know how to create a date object, let’s see how to retrieve date and time information.

Retrieving JS Date and Time Information

The Date object provides methods for extracting various components of a date, such as a year, month, and hour. Key methods include

  • getDate(): Returns the day of the month.

  • getFullYear(): Returns the four-digit year.

  • getMonth(): Returns the month (0-11, where 0 represents January).

  • getHours(): Returns the hour (0-23).

  • getMinutes(): Returns the minutes (0-59).

  • getSeconds(): Returns the seconds (0-59).

For example, to retrieve the current date and format it as MM/DD/YYYY HH:MM:ss:

function formatDate(dateObject) {
  const year = dateObject.getFullYear();
  const month = dateObject.getMonth() + 1; // Months are zero-indexed
  const day = dateObject.getDate();
  const hours = dateObject.getHours();
  const minutes = dateObject.getMinutes();
  const seconds = dateObject.getSeconds();
  
  return `${month}/${day}/${year} ${hours}:${minutes}:${seconds}`;
}
console.log(formatDate(new Date()));

Here is the result when executing the function. 

Image2

There are however interesting methods we can use to format datetime into readable formats. 

Formatting Date and Time

JavaScript provides methods to format datetime values into human-readable strings. This allows developers to convert a Date object to a string or vice versa.

Formatting a Date as a String

To output a Date object as a human-readable string, use methods like toDateString() and toTimeString():

const currentDate = new Date();
const dateString = currentDate.toDateString();
console.log(dateString);

const timeString = currentDate.toTimeString();
console.log(timeString);

Here is the output:

Image5

Converting Strings to Date Objects

Developers can also convert readable strings into Date objects using the Date constructor:

const dateFromString = new Date("October 10, 2024");
console.log(dateFromString);

Image4

However, it’s better to use recommended formats. 

Recommended Formats

To avoid errors when working with date strings, it is advisable to use reliable formats:

  1. ISO 8601 Format (Recommended): The safest and most reliable format is the ISO 8601 date format: YYYY-MM-DDTHH:mm:ss.sssZ. If only the date part is provided, it assumes the time as midnight 00:00:00.

const date = new Date("2024-10-10T14:48:00Z");
console.log(date);

Image7

  1. RFC2822 Format: Another accepted format is the RFC2822 format commonly used in email headers: Day, DD Mon YYYY HH:mm:ss GMT.

const date = new Date("Wed, 10 Oct 2024 14:48:00 GMT");
console.log(date);

Image6

We now know how to format datetime values using the Date object. Let’s see how to manipulate date values for simple scheduling and calculations.

Manipulating Date Values

Date manipulation is essential for tasks like scheduling and calculating deadlines. JavaScript provides setter methods for modifying specific components of a Date object.

Modifying Date Components

Developers can modify specific components of a Date object using setter methods. Note that months are zero-indexed:

let date = new Date();
date.setFullYear(2025);
date.setMonth(5);        // Set month to June
date.setDate(15);        // Set day to 15th
date.setHours(10);       // Set hour to 10 AM
date.setMinutes(30);     // Set minutes to 30
date.setSeconds(45);     // Set seconds to 45
console.log(date);

Image9

Adding or Subtracting Days

Developers can easily add or subtract days using setDate():

let date = new Date();
date.setDate(date.getDate() + 5); // Add 5 days
console.log(date);

Image8

Date arithmetic can be accomplished using timestamps (milliseconds since January 1, 1970):

let now = new Date();
let oneDayInMs = 24 * 60 * 60 * 1000;
let tomorrow = new Date(now.getTime() + oneDayInMs);
console.log(tomorrow);

Image12

Comparing Date Objects

Date objects can be compared using their timestamps:

let date1 = new Date('2024-10-10');
let date2 = new Date('2024-12-25');
console.log(date1 > date2);  // false (October 10 is earlier than December 25)
console.log(date1 < date2);  // true
console.log(date1.getTime() === date2.getTime());  // false

Image10

Now that we now how to manipulate dates values for calculation, let’s see how we can handle dates with time zones.

Working with Time Zones

The Date object is timezone-agnostic, meaning it doesn't have a built-in concept of time zones. However, JavaScript’s Date object handles dates in local time (system time zone) and UTC. When creating Date objects, it is essential to be aware of time zone conversions, especially when performing operations across different regions.

Local Time vs. UTC

JavaScript can work with localtime and UTC. Local time allows you to represent the time by the Date object when created without any specific time zone information, reflecting the local time of the environment in which JavaScript is executed. For example, creating a Date object in Paris will reflect the central European time zone.

UTC is the time standard not affected by time zones or DayLight Saving Time (DST). Using Coordinated Universal Time (UTC) ensures consistency and avoids ambiguity when working with dates and times across different time zones, simplifying time calculations, logging, and user experience management in applications that serve users in multiple regions.

Creating Date Objects in UTC

To create a Date object in UTC, use the ISO 8601 format:

const utcDate = new Date("2024-10-10T14:30:00Z");
console.log(utcDate);

Image11

Converting Local Time to UTC

To retrieve UTC date components, use getUTCDate(), getUTCMonth(), etc.:

const localDate = new Date();
console.log(localDate.getUTCDate(), localDate.getUTCMonth() + 1, localDate.getUTCFullYear());

Image13

Converting UTC to Local Time

Similarly, to convert a UTC date to local time, you can use the local equivalent methods:

const utcDate = new Date("2024-10-10T14:30:00Z"); // UTC date
const localDay = utcDate.getDate();
const localMonth = utcDate.getMonth() + 1; // Months are zero-indexed
const localYear = utcDate.getFullYear();

console.log(`Local Date: ${localMonth}/${localDay}/${localYear}`);

Image14

Being mindful of time zones when working with dates in JavaScript is essential for ensuring accurate datetime representation, especially in applications that require coordination across different regions.

Let’s learn more about common Date Object methods.

Common Date Object Methods

JavaScript provides several static and instance methods that simplify working with dates. Here are some key methods:

  • Date.now(): Returns the current timestamp in milliseconds since January 1, 1970.

  • Date.parse(): Parses a date string and returns the number of milliseconds since the Unix Epoch (January 1, 1970). If the string cannot be parsed, it returns NaN.

  • Date.UTC(): Creates a Date object from UTC values.

  • Date.toString(): Returns a string representation of the Date object in a readable format.

  • valueOf(): Returns the primitive value of the Date object.

These methods provide essential functionality for working with dates in JavaScript, enabling developers to efficiently manage and manipulate date values in their applications. 

Conclusion

The JavaScript Date object is an essential tool for managing datetime in web development. From creating dates to formatting and performing date arithmetic, mastering this object will enable developers to handle time-sensitive data efficiently, regardless of time zone or locale.

By using built-in methods and libraries like Moment.js, date-fns, or Day.js, developers can ensure their applications deliver a smooth user experience when working with dates.

JavaScript
15.10.2024
Reading time: 8 min

Similar

JavaScript

How to Use JavaScript Array map()

Arrays play a crucial role in JavaScript programming. They let you store and manipulate collections of data with ease. One powerful method for working with arrays is the map() function. The map() method creates a new array by applying a given function to each element of the original array. Simply put, map() takes your array, processes each item through a function you provide, and returns a new array with the transformed items. It doesn't change the original array, which helps prevent unintended side effects in your code.  In this guide, we'll explore the map() function, how it works, and how you can use it in your JavaScript projects. Basic Syntax and Parameters of map() The map() function is a built-in method in JavaScript that you can use on arrays. It creates a new array by applying a function to each element of the original array. Below is the syntax: let newArray = originalArray.map(function(currentValue, index, array) { // return element to newArray }); Or, using arrow function syntax: let newArray = originalArray.map((currentValue, index, array) => { // return element to newArray }); Let's break down the parameters: currentValue: The current element being processed in the array. index (optional): The index of the current element. array (optional): The original array to which map() is being applied. However, you must provide a callback function that tells map() how to transform each element. This function runs once for every item in the array. Importantly, map() does not modify the original array; instead, it returns a new array with the transformed elements. For example, if you have an array of numbers and want to add 1 to each number, you can use map() like this: let numbers = [1, 2, 3, 4, 5]; let incrementedNumbers = numbers.map(number => number + 1); console.log(incrementedNumbers); Output: [ 2, 3, 4, 5, 6 ] In this example, the map() function takes each number in the numbers array, adds 1 to it, and returns a new array called incrementedNumbers. Using map() to Transform Array Elements The map() method is helpful when you need to transform each element in an array. It applies a function to every item and returns a new array with the transformed elements. Let's explore how you can use map() to manipulate array data. Let’s say you have an array of numbers, and want to double each number. Instead of writing a loop, you can achieve this with map() in a more concise way. let numbers = [1, 2, 3, 4, 5]; let doubled = numbers.map(number => number * 2); console.log(doubled); Output: [ 2, 4, 6, 8, 10 ] In this example, numbers.map(number => number * 2) takes each element in the numbers array, multiplies it by two, and stores the result in a new array called doubled. The original numbers array remains unchanged. You can also transform arrays of strings. Let's say you have an array of names and you want to convert them all to uppercase letters. let names = ['alice', 'bob', 'charlie']; let upperNames = names.map(name => name.toUpperCase()); console.log(upperNames); Output: [ 'ALICE', 'BOB', 'CHARLIE' ] Here, map() applies the toUpperCase() method to each string in the names array, resulting in a new array upperNames with all names in uppercase. Another practical use is when working with arrays of objects. For example, you might have an array of user objects and want to extract a specific property from each one. let users = [ { name: 'Alice', age: 25 }, { name: 'Bob', age: 30 }, { name: 'Charlie', age: 35 } ]; let userNames = users.map(user => user.name); console.log(userNames); Output: [ 'Alice', 'Bob', 'Charlie' ] In this case, map() extracts the name property from each user object and creates a new array userNames. Practical Examples of map() The map() function really shines when working with real-world data. Let's see some practical examples to see how map() can simplify your JavaScript code. Example 1: Converting Temperatures Let’s assume you have an array of temperatures in Celsius and want to convert them to Fahrenheit. You can use map() to apply the conversion formula to each element. let celsius = [0, 20, 30, 40]; let fahrenheit = celsius.map(temp => temp * 9/5 + 32); console.log(fahrenheit); Output: [ 32, 68, 86, 104 ] In this example, map() takes each temperature in the celsius array, converts it to Fahrenheit, and returns a new array called fahrenheit. Example 2: Extracting Usernames from Emails Imagine you have an array of email addresses and you want to extract the usernames. let emails = ['[email protected]', '[email protected]', '[email protected]'];let usernames = emails.map(email => email.split('@')[0]);console.log(usernames); Output: [ 'alice', 'bob', 'charlie' ] Here, map() processes each email address, splits it at the @ symbol, and extracts the username part. Example 3: Applying Discounts to Products If you have an array of product objects and need to apply a discount to each product's price, map() makes this task easy. let products = [ { name: 'Laptop', price: 1000 }, { name: 'Phone', price: 500 }, { name: 'Tablet', price: 750 } ]; let discountedProducts = products.map(product => { return { name: product.name, price: product.price * 0.9 // Apply a 10% discount }; }); console.log(discountedProducts); Output: [ { name: 'Laptop', price: 900 }, { name: 'Phone', price: 450 }, { name: 'Tablet', price: 675 } ] In this case, map() creates a new array discountedProducts with the discounted prices, leaving the original products array unchanged. Example 4: Formatting Dates If you have an array of date strings and want to format them into a more readable form. let dates = ['2023-01-01', '2023-02-14', '2023-12-25']; let formattedDates = dates.map(date => { let options = { year: 'numeric', month: 'long', day: 'numeric' }; return new Date(date).toLocaleDateString(undefined, options); }); console.log(formattedDates); Output: [ 'January 1, 2023', 'February 14, 2023', 'December 25, 2023' ] Here, map() converts each date string into a Date object and formats it using toLocaleDateString(). Example 5: Generating HTML Elements If you're working with the DOM, you can use map() to create an array of HTML elements. let fruits = ['apple', 'banana', 'cherry'];let fruitListItems = fruits.map(fruit => `<li>${fruit}</li>`);console.log(fruitListItems); Output: [ '<li>apple</li>', '<li>banana</li>', '<li>cherry</li>' ] You can then join these items and insert them into your HTML. let fruits = ['apple', 'banana', 'cherry']; let fruitListItems = fruits.map(fruit => `<li>${fruit}</li>`); let fruitList = `<ul>${fruitListItems.join('')}</ul>`; console.log(fruitList); Output: <ul><li>apple</li><li>banana</li><li>cherry</li></ul> This demonstrates how map() can help generate dynamic content. Chaining map() with Other Array Methods The map() function becomes even more powerful when you chain it with other array methods like filter(), reduce(), or sort(). You can perform complex data transformations easily when you combine these methods. Filtering and Mapping Let’s say you have an array of numbers and you want to double only the even numbers. let numbers = [1, 2, 3, 4, 5, 6]; let doubledEvens = numbers .filter(number => number % 2 === 0) .map(number => number * 2); console.log(doubledEvens); Output: [ 4, 8, 12 ] In this example, filter() first selects the even numbers from the numbers array. Then, map() doubles each of those numbers. Mapping and Reducing Imagine you have an array of objects representing products and want to calculate the total price of all products after applying a discount. let products = [ { name: 'Laptop', price: 1000 }, { name: 'Phone', price: 500 }, { name: 'Tablet', price: 750 } ]; let totalDiscountedPrice = products .map(product => product.price * 0.9) // Apply a 10% discount .reduce((total, price) => total + price, 0); console.log(totalDiscountedPrice); Output: 2025 Here, map() creates a new array with the discounted prices. Then, reduce() sums up the prices to get the total. Sorting Mapped Values Imagine you have an array of strings and want to convert them to uppercase and then sort them alphabetically. let fruits = ['banana', 'apple', 'cherry']; let sortedFruits = fruits .map(fruit => fruit.toUpperCase()) .sort(); console.log(sortedFruits); Output: [ 'APPLE', 'BANANA', 'CHERRY' ] In this case, map() transforms each fruit name to uppercase, and sort() arranges them alphabetically. Complex Data Transformation Let’s assume you have an array of user objects, and you want to get a sorted list of active users' usernames. let users = [ { username: 'alice', active: true }, { username: 'bob', active: false }, { username: 'charlie', active: true } ]; let activeUsernames = users .filter(user => user.active) .map(user => user.username) .sort(); console.log(activeUsernames); Output: [ 'alice', 'charlie' ] Here, you filter out inactive users, extract their usernames with map(), and sort the usernames alphabetically. Handling Edge Cases with map() While the map() function is powerful, handling edge cases is important to prevent unexpected behavior. Let's explore some common scenarios and how to manage them. Dealing with Empty Arrays If you apply map() to an empty array, it simply returns another empty array. There's no need to add extra checks for this case. let emptyArray = [];let result = emptyArray.map(item => item * 2);console.log(result); Output: [ ] Handling Undefined or Null Elements When your array contains undefined or null values, map() will pass them to your callback function. You need to ensure your function can handle these values without throwing errors. let values = [1, null, 3, undefined, 5]; let processedValues = values.map(value => { if (value === null || value === undefined) { return 0; // Assign a default value } return value * 2; }); console.log(processedValues); Output: [ 2, 0, 6, 0, 10 ] In this example, we check for null or undefined and assign a default value of 0 before performing the calculation. Avoiding Holes in Arrays Arrays can have holes if elements are deleted or uninitialized. The map() function skips these holes, which might lead to unexpected results. let sparseArray = [1, , 3, , 5]; // Note the missing elementslet doubled = sparseArray.map(number => number * 2);console.log(doubled); Output: [ 2, <1 empty item>, 6, <1 empty item>, 10 ] To handle this, you can use the Array.from() method to create an array without holes before mapping. let sparseArray = [1, , 3, , 5]; // Note the missing elements let doubled = sparseArray.map(number => number * 2); let denseArray = Array.from(sparseArray); let doubledDense = denseArray.map(number => number * 2); console.log(doubledDense); Output: [ 2, NaN, 6, NaN, 10 ] Now, the missing elements are converted to undefined, and you can handle them accordingly. Managing Asynchronous Operations The map() function doesn't support asynchronous operations natively. To perform asynchronous tasks, consider using Promise.all() with map(). let urls = ['url1', 'url2', 'url3']; let fetchPromises = urls.map(url => fetch(url)); Promise.all(fetchPromises) .then(responses => { // Handle responses }) .catch(error => { // Handle errors }); Here, map() creates an array of promises, and Promise.all() waits for all of them to resolve. Using map() with Callback Functions The map() method relies on a callback function to process each element in an array. Let's explore different ways to use map() with callback functions. Using Named Functions You can pass a named function to map() for better readability, especially when the transformation logic is complex. function doubleNumber(number) { return number * 2; } let numbers = [1, 2, 3, 4, 5]; let doubledNumbers = numbers.map(doubleNumber); console.log(doubledNumbers); Output: [ 2, 4, 6, 8, 10 ] In this example, the doubleNumber function is passed as the callback to map(). Each element in the numbers array is doubled, resulting in a new array doubledNumbers. Using Anonymous Functions Anonymous functions can be used directly within map() for simple transformations. let numbers = [1, 2, 3, 4, 5]; let squaredNumbers = numbers.map(function(number) { return number * number; }); console.log(squaredNumbers); Output: [ 1, 4, 9, 16, 25 ] Here, an anonymous function computes the square of each number in the array. Using Arrow Functions Arrow functions offer a concise syntax and are commonly used with map(). let numbers = [1, 2, 3, 4, 5]; let tripledNumbers = numbers.map(number => number * 3); console.log(tripledNumbers); Output: [ 3, 6, 9, 12, 15 ] The arrow function number => number * 3 triples each number in the array. Using Callback Functions with Multiple Parameters The callback function can accept additional parameters like index and array, providing more context during the mapping process. let numbers = [10, 20, 30, 40, 50]; let adjustedNumbers = numbers.map((number, index) => number - index * 2); console.log(adjustedNumbers); Output: [ 10, 18, 26, 34, 42 ] In this example, each number is adjusted based on its index in the array. Using thisArg with map() The map() method accepts an optional second argument called thisArg, which sets the value of this inside the callback function. let multiplier = { factor: 2 }; let numbers = [1, 2, 3]; let scaledNumbers = numbers.map(function(number) { return number * this.factor; }, multiplier); console.log(scaledNumbers); Output: [ 2, 4, 6 ] By passing multiplier as the thisArg, the callback function can access this.factor to scale each number. Performance Considerations for map() When using map(), it's important to consider performance. Since map() creates a new array, it consumes additional memory. Therefore, with very large arrays, this extra memory usage can affect your application's efficiency. Furthermore, while map() offers clean and readable code, traditional loops like for or while loops might execute faster in performance-critical situations. If speed is crucial, consider using a loop instead of map(). Moreover, keep your callback functions simple. Complex operations inside the map() callback can slow down processing. To maintain optimal performance, aim for straightforward transformations. Finally, use map() only when you need the new array it returns. If you're performing actions without needing the resulting array, methods like .forEach() are more appropriate. This avoids unnecessary memory allocation and enhances performance. Conclusion The JavaScript map() function is a powerful tool for array manipulation. By applying a function to each element, it creates a new array with transformed values, making tasks like data conversion and extraction straightforward. Understanding how to use map() effectively allows you to write cleaner, more efficient code.
16 October 2024 · 12 min to read
JavaScript

How to Parse JSON in JavaScript

Let’s start this article with a simple, approachable, and reader-friendly way to grasp the concept. To begin, let’s discuss what JSON is. A basic JavaScript function called JSON parsing enables programmers to transform JSON strings into functional JavaScript objects. This is made easier with the integrated in JS parsing JSON function. Take the JSON string {"name": "John", "age": 30}, for instance. This string is converted into a JavaScript object with characteristics like name and age using JSON.parse(). This kind of power is especially important when working with external data sources, like APIs. For example, the response.json() method is used to parse the JSON content when retrieving JSON data from a server using the Fetch API. The program can then easily use the parsed data to provide dynamic and engaging user experiences.  JSON (JavaScript Object Notation) The term JSON, JavaScript Object Notation, is a data interchange format particularly used to interchange data between several platforms. JSON is among the best formats that play a significant role in communicating and interchanging data. JS JSON parser is easy for humans to read, write, and understand in a simplified way, and for machines, it is likely easier to generate and parse data. Furthermore, it is an independent programming language that follows a programming approach that is compatible with general programming ideas. As a result, JSON parser in JS is used in JavaScript for storing and conveying data between the server and the client. JSON Syntax Rules Data is required to be in key-value pairs. Data is separated from each other using commas. Curly brackets hold objects. Square brackets hold arrays. Example of JSON For example, consider an object named employee that contains three employee records. This object can be represented in JSON format as follows: { "𝚎𝚖𝚙𝚕𝚘𝚢𝚎𝚎𝚜":[ {"𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝙼𝚒𝚕𝚕𝚒𝚎", "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝙲𝚛𝚒𝚜𝚝𝚒𝚗𝚊"}, {"𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝚆𝚊𝚝𝚜𝚘𝚗", "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝚃𝚑𝚘𝚖𝚊𝚜"}, {"𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝙹𝚊𝚜𝚖𝚒𝚗𝚊", "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝙽𝚒𝚌𝚔"} ] } Syntactically, the code used to create JavaScript objects is identical to that of the JSON format. Therefore, this closeness makes it easy for a JavaScript program to transform JSON data into native JavaScript objects. JSON Data (Name and Value) JSON data is expressed as name/value pairs, much like the properties of JavaScript objects. A field name (in double quotes), a colon (:), and a value make up a name/value pair. For instance: "𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝚂𝚒𝚛𝚕𝚒𝚎" Note: Keep in mind that JSON names need double quotes on the other hand JavaScript names do not. JSON Objects Curly brackets are used to write JSON objects.  Objects can include many name/value pairs, just like in JavaScript. For instance: {"𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝚂𝚒𝚛𝚕𝚒𝚎", "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝙼𝚒𝚌𝚔𝚘𝚗"} Working with JSON Changing a JSON Text to a JavaScript Object Reading data from a web server and displaying it on a web page is a popular use for parsing json in js. To keep things simple, let's say we have a string as input. Make a JavaScript string with JSON syntax first: 𝚟𝚊𝚛 𝚝𝚎𝚡𝚝 = '{ "𝚎𝚖𝚙𝚕𝚘𝚢𝚎𝚎𝚜" : [' + '{ "𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝙹𝚘𝚗𝚊𝚜" , "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝙰𝚕𝚊𝚗" },' + '{ "𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝚔𝚑𝚊𝚒" , "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝚋𝚛𝚘𝚘𝚔" },' + '{ "𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎":"𝚓𝚎𝚜𝚜𝚒𝚌𝚊" , "𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎":"𝚜𝚖𝚒𝚝𝚑" } ]}'; After that, use the JavaScript built-in function JSON.parse() to translate the string into a JavaScript object just as the example given below. var obj = JSON.parse(text); Conclusively, now you can use the new JavaScript object. Example: <𝚙 𝚒𝚍="𝚍𝚎𝚖𝚘"></𝚙><𝚜𝚌𝚛𝚒𝚙𝚝> 𝚍𝚘𝚌𝚞𝚖𝚎𝚗𝚝.𝚐𝚎𝚝𝙴𝚕𝚎𝚖𝚎𝚗𝚝𝙱𝚢𝙸𝚍("𝚍𝚎𝚖𝚘").𝚒𝚗𝚗𝚎𝚛𝙷𝚃𝙼𝙻 = 𝚘𝚋𝚓.𝚎𝚖𝚙𝚕𝚘𝚢𝚎𝚎𝚜[𝟷].𝚏𝚒𝚛𝚜𝚝𝙽𝚊𝚖𝚎 + " " + 𝚘𝚋𝚓.𝚎𝚖𝚙𝚕𝚘𝚢𝚎𝚎𝚜[𝟷].𝚕𝚊𝚜𝚝𝙽𝚊𝚖𝚎; </𝚜𝚌𝚛𝚒𝚙𝚝> Let's now explore the several JavaScript ways for parsing JSON data. JSON.parse() JavaScript has a built-in function called JSON.parse() to turn a JSON string into a JavaScript object. The syntax is straightforward. Example: 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐 = '{"𝚗𝚊𝚖𝚎": "𝙹𝚘𝚑𝚗", "𝚊𝚐𝚎": 𝟹0}'; 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝙾𝚋𝚓𝚎𝚌𝚝 = 𝙹𝚂𝙾𝙽.𝚙𝚊𝚛𝚜𝚎(𝚓𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐); 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕(𝚓𝚜𝚘𝚗𝙾𝚋𝚓𝚎𝚌𝚝); // 𝙾𝚞𝚝𝚙𝚞𝚝: { 𝚗𝚊𝚖𝚎: '𝙹𝚘𝚑𝚗', 𝚊𝚐𝚎: 𝟹0 } Parsing JSON from a File External files are frequently used to store JSON data. In JavaScript, you may use asynchronous methods like fetch() or frameworks like Axios to get and parse JSON data from a file. Here's an example with fetch(): 𝚏𝚎𝚝𝚌𝚑('𝚍𝚊𝚝𝚊.𝚓𝚜𝚘𝚗') .𝚝𝚑𝚎𝚗(𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 => 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎.𝚓𝚜𝚘𝚗()) .𝚝𝚑𝚎𝚗(𝚍𝚊𝚝𝚊 => 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕𝚘𝚐(𝚍𝚊𝚝𝚊)) .𝚌𝚊𝚝𝚌𝚑(𝚎𝚛𝚛𝚘𝚛 => 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚎𝚛𝚛𝚘𝚛('𝙴𝚛𝚛𝚘𝚛 𝚏𝚎𝚝𝚌𝚑𝚒𝚗𝚐 𝙹𝚂𝙾𝙽:', 𝚎𝚛𝚛𝚘𝚛)); Handling JSON Arrays JSON arrays are defined as comma-separated values surrounded by square brackets []. You can parse JSON arrays in the same way that you can parse objects using JSON.parse(). Example: 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝙰𝚛𝚛𝚊𝚢𝚂𝚝𝚛𝚒𝚗𝚐 = '[{"𝚗𝚊𝚖𝚎": "𝙹𝚘𝚑𝚗", "𝚊𝚐𝚎": 𝟹0}, {"𝚗𝚊𝚖𝚎": "𝙰𝚕𝚒𝚌𝚎", "𝚊𝚐𝚎": 𝟸𝟻}]'; 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝙰𝚛𝚛𝚊𝚢 = 𝙹𝚂𝙾𝙽.𝚙𝚊𝚛𝚜𝚎(𝚓𝚜𝚘𝚗𝙰𝚛𝚛𝚊𝚢𝚂𝚝𝚛𝚒𝚗𝚐); 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕(𝚓𝚜𝚘𝚗𝙰𝚛𝚛𝚊𝚢); // 𝙾𝚞𝚝𝚙𝚞𝚝: [ { 𝚗𝚊𝚖𝚎: '𝙹𝚘𝚑𝚗', 𝚊𝚐𝚎: 𝟹0 }, { 𝚗𝚊𝚖𝚎: '𝙰𝚕𝚒𝚌𝚎', 𝚊𝚐𝚎: 𝟸𝟻 } ] Error Handling When processing JSON data, it is critical to handle mistakes graciously. If the supplied string contains invalid JSON, the JSON.parse() function returns a SyntaxError. You may use try-catch blocks to deal with parsing errors: Example: 𝚌𝚘𝚗𝚜𝚝 𝚒𝚗𝚟𝚊𝚕𝚒𝚍𝙹𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐 = '{𝚗𝚊𝚖𝚎: "𝙹𝚘𝚑𝚗", 𝚊𝚐𝚎: 𝟹0}'; 𝚝𝚛𝚢 { 𝚌𝚘𝚗𝚜𝚝 𝚙𝚊𝚛𝚜𝚎𝚍𝙳𝚊𝚝𝚊 = 𝙹𝚂𝙾𝙽.𝚙𝚊𝚛𝚜𝚎(𝚒𝚗𝚟𝚊𝚕𝚒𝚍𝙹𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐); 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕𝚘𝚐(𝚙𝚊𝚛𝚜𝚎𝚍𝙳𝚊𝚝𝚊); } 𝚌𝚊𝚝𝚌𝚑 (𝚎𝚛𝚛𝚘𝚛) { 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚎𝚛𝚛𝚘𝚛('𝙴𝚛𝚛𝚘𝚛 𝚙𝚊𝚛𝚜𝚒𝚗𝚐 𝙹𝚂𝙾𝙽:', 𝚎𝚛𝚛𝚘𝚛); } Reviver Function The JSON.parse() method takes an optional reviver function as its second argument. This method lets you change how the JSON parsing process works by changing the processed value before it is returned. Example: 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐𝚆𝚒𝚝𝚑𝙳𝚊𝚝𝚎𝚜 = '{"𝚍𝚊𝚝𝚎": "𝟸0𝟸𝟺-0𝟸-𝟸𝟹𝚃𝟷𝟸:00:00.000𝚉"}'; 𝚌𝚘𝚗𝚜𝚝 𝚓𝚜𝚘𝚗𝙾𝚋𝚓𝚎𝚌𝚝𝚆𝚒𝚝𝚑𝙳𝚊𝚝𝚎𝚜 = 𝙹𝚂𝙾𝙽.𝚙𝚊𝚛𝚜𝚎(𝚓𝚜𝚘𝚗𝚂𝚝𝚛𝚒𝚗𝚐𝚆𝚒𝚝𝚑𝙳𝚊𝚝𝚎𝚜, (𝚔𝚎𝚢, 𝚟𝚊𝚕𝚞𝚎) => { 𝚒𝚏 (𝚔𝚎𝚢 === '𝚍𝚊𝚝𝚎') { 𝚛𝚎𝚝𝚞𝚛𝚗 𝚗𝚎𝚠 𝙳𝚊𝚝𝚎(𝚟𝚊𝚕𝚞𝚎); } 𝚛𝚎𝚝𝚞𝚛𝚗 𝚟𝚊𝚕𝚞𝚎; }); 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕𝚘𝚐(𝚓𝚜𝚘𝚗𝙾𝚋𝚓𝚎𝚌𝚝𝚆𝚒𝚝𝚑𝙳𝚊𝚝𝚎𝚜.𝚍𝚊𝚝𝚎 𝚒𝚗𝚜𝚝𝚊𝚗𝚌𝚎𝚘𝚏 𝙳𝚊𝚝𝚎); // 𝙾𝚞𝚝𝚙𝚞𝚝: 𝚝𝚛𝚞𝚎 Fetch with JSON parsing Retrieves data from an external source (such as an API) and automatically parses it into JSON. Example: 𝚏𝚎𝚝𝚌𝚑('𝚑𝚝𝚝𝚙𝚜://𝚊𝚙𝚒.𝚎𝚡𝚊𝚖𝚙𝚕𝚎.𝚌𝚘𝚖/𝚍𝚊𝚝𝚊') .𝚝𝚑𝚎𝚗(𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎 => 𝚛𝚎𝚜𝚙𝚘𝚗𝚜𝚎.𝚓𝚜𝚘𝚗()) .𝚝𝚑𝚎𝚗(𝚍𝚊𝚝𝚊 => 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚕𝚘𝚐(𝚍𝚊𝚝𝚊.𝚗𝚊𝚖𝚎)) // 𝙰𝚜𝚜𝚞𝚖𝚒𝚗𝚐 𝚝𝚑𝚎 𝙰𝙿𝙸 𝚛𝚎𝚝𝚞𝚛𝚗𝚜 𝙹𝚂𝙾𝙽 𝚠𝚒𝚝𝚑 𝚊 "𝚗𝚊𝚖𝚎" 𝚙𝚛𝚘𝚙𝚎𝚛𝚝𝚢 .𝚌𝚊𝚝𝚌𝚑(𝚎𝚛𝚛𝚘𝚛 => 𝚌𝚘𝚗𝚜𝚘𝚕𝚎.𝚎𝚛𝚛𝚘𝚛(𝚎𝚛𝚛𝚘𝚛));  Cautions to Parsing JSON in JavaScript  JSON parsing is an essential ability for web developers. Learn how to use JSON.parse() and JSON.stringify() for fundamental functionality. As your demands change, you can explore more complex approaches. Prioritize data security and validation. Conclusion In a nutshell, one of the most important aspects of web development is parsing JSON in JavaScript, which allows JSON strings to be converted into JavaScript objects for efficient data handling. This procedure is made simpler by the integrated JSON.parse() function, which enables developers to easily integrate and use external data—especially when utilizing APIs. The foundation for developing dynamic and interactive user interfaces is provided by JavaScript, a flexible and popular computer language.  Furthermore, json parsing js is an essential component of contemporary web development because of its interoperability with both HTML and CSS and a thriving ecosystem of tools and frameworks. JavaScript has a significant impact on how online applications run and how users interact with them, whether it is through performance optimization, data gathering from other sources, or best practices implementation. 
22 March 2024 · 7 min to read
JavaScript

Looping through Objects’s Keys and Values in JavaScript

JavaScript, a user-friendly programming language with important components such as object keys and values, serves as a robust creator of dynamic and interactive web applications. Complex and constantly changing data require efficient iterating over the object's keys and values. It is precisely the 'iterating through object keys and values' concept, or simply JS looping through object keys and values that provides access and performs required actions. Once you master these techniques, you can skillfully manipulate data and enhance the functionality of your applications. A foundational skill for any JavaScript developer improves the manipulation and processing of complex data sets, making your code more dynamic and flexible. While constantly changing and updating data, developers can easily access and manipulate data using this cost-effective method without repeating code. In this article, we’ll delve into various techniques and methods to loop through object keys and values in JS, so you’ll learn how to apply them in your code. Whether you are a beginner or an experienced developer, read on to discover how to improve your data manipulation skills and efficiently apply them in your own projects. Explore the world of looping through object keys and values in JavaScript. Objects in JavaScript Before diving into the theory and practice, let's start with understanding what objects are in JavaScript. So, they are a collection of key-value pairs, where the key is a unique identifier and the corresponding value is any data type. They allow data to be stored and manipulated in a structured and organized way. Also they contain any number of key-value pairs with different data types. The loop through object feature in JS stands for creating complex objects, suitable for storing, sorting, filtering, searching and manipulating large amounts of data. Objects can have functions as their values, known as methods, which perform specific actions or operations on the object's data. New key-value pairs can be added to an object, existing values can be modified, or even deleted if required. Simple and fully managed app deployment Basic for loop through object keys and values in JS The JS for loop is commonly used for iterating through arrays and objects as well as for looping through object keys and values, especially to get access and manipulate specific properties within an object.  To start, learn the basic for loop method for looping through an array: for (var i = 0; i < array.length; i++) {// code to be executed} This for loop has three parts: the initialization (var i = 0) the condition (i < array.length) the increment (i++). The loop runs as long as the condition is true, and each time it loops, the i value is increased. This feature gives access to each element in the array with the help of the i index. To use a similar for loop to iterate through object keys and values, you should apply the for...in loop designed specifically for objects: for (var key in object) {// code to be executed} In this loop, the variable key takes on the value of each key in the object as it loops through the JS object. This feature gives access to the corresponding value for each key via object[key]. For instance, for an object called site with the properties web name, age, and occupation, each property and its value can be accessed via the for...in loop: var site = { web name: 'Hostman', age: 5, occupation: 'cloud service provider' }; for (var key in site) { console.log(key + ': ' + site[key]); } // Output: // name: Hostman // age: 5 // occupation: cloud service provider So, the for...in loop gives an easy access to all the keys and values in an object without having to know the exact names of the properties in advance. This is useful for interacting with large and complex objects. The for...in loop is also used to check if a specific property exists in an object, and modify its value by using the hasOwnProperty() method: for (var key in site) { if (site.hasOwnProperty(key)) { // code to be executed } } The for loop feature for iterating through object keys and values in JS provides quick access to the properties and the ability to manipulate them within an object. By understanding the syntax and usage of the feature, you can improve the functionality of working with objects and shorten your code. The Object.keys() method to loop through objects in JS The built-in Object.keys() method in JavaScript allows you to get an array of all the keys of a given object. The JS feature is designed to loop over all the properties of an object because it is a simple way to access and manipulate each key individually. The idea is to pass the object you want to get the keys from as a parameter, and the method returns an array of all the keys in that object. Static method syntax is called directly on the Object class, not on the object instance. That's why it got its name Object.keys(). The parentheses after the method name are used to pass the object from which you want to get the keys. For instance, for an object called site with properties such as web name, age, and occupation, apply the following Object.keys() method: Object.keys(site) The JS method will loop over the properties of the passed object and return an array of all keys. The keys in the array are arranged in the same order in which they appear in the object due to the fact that objects in JavaScript are unordered, meaning there is no guarantee that the properties will be returned in a particular order. However, the Object.keys() method ensures that the keys are returned in the order in which they were added to the object. The Object.values() method to loop through objects in JS The Object.values() method allows you to quickly access and retrieve all the values ​​of an object as an array, simplifying the way you manipulate and loop through an array of objects in JS. For instance, for an object called site that contains various properties such as web name, age, occupation, using the Object.values() method allows retrieving all the values of this object in the form of an array. The syntax is simple and consists of passing the object site as a parameter: const siteValues = Object.values(site); This feature will return an array with all the site object values in the same order as they are defined in the object. This array helps performing various operations, such as filtering or sorting the data. Combining Object.keys() and Object.values() for efficient object iteration in JavaScript The Object.keys() and Object.values() methods provide a more efficient way of how to loop through an object in JS. The first one returns an array of all the keys present in an object, while the second one returns an array of all the corresponding values. The combination of both methods gives access to both the keys and values ​​of an object. For instance, for an object called site with properties like web name, age, occupation, apply the following code. const site = { web name: 'Hostman', age: 5, occupation: 'cloud service provider' }; const keys = Object.keys(site); const values = Object.values(site); console.log(keys); // Output: ['web name', 'age', 'occupation'] console.log(values); // Output: ['Hostman', 5, 'cloud service provider'] As a result of the synergy of both methods, two arrays were returned containing the keys and values of the site object. They are easily accessed and manipulated to perform any operation on the object, including loop through object properties in JS. The for...of method to loop through object in JS The for...of loop provides a simplified syntax compared to the traditional for...in loop, iterating over the values of an object while working with arrays, strings, and other iterable objects. The feature eliminates errors or bugs in code as there is no need for manual counting or using a counter variable. Automatically iterating over each element of the iterable object and assigning it to a variable improves the loop through object keys in JS. The feature can be used with any iterable object, regardless of its length or size, with a variable number of elements, such as arrays. For instance, if you want to print out each flower separately, use the for...of loop.  To start, declare the array of flowers: const flowers = ['rose', 'daisy', 'violet']; Next, apply the for...of loop to iterate over the elements in the flowers array and print out each flower: for (const flower of flowers) {console.log(flower);} In this code, the variable flower is automatically assigned to each element in the flowers array in every iteration of the loop, allowing the value of each flower to be accessed and printed without manually declaring and incrementing a counter variable. Managed solution for Backend development The Object.entries() method in JavaScript The Object.entries() method stands for efficient iteration through the keys and values of an object. Simple access to and manipulation of object properties eliminates the need for complex syntax or methods. It takes an object as a parameter and returns an array of arrays. Each inner array consists of two elements, where the first is the object's property key, and the second is the corresponding value. This is a useful feature to loop through an object and access both the keys and values at the same time in JS. For instance, for an object called site with properties such as web name, age, and occupation, apply the Object.entries() method to loop through this object and access both the keys and values. The syntax looks as follows: Object.entries(site); This will return an array of arrays with the following structure: [['web name', 'Hostman'], ['age', 5], ['occupation', 'cloud service provider']] Each inner array contains two elements, the key and value of the object property to access both of them in a single iteration. This method can be used in conjunction with a for loop to iterate through the array and perform any desired operations with the objects in JS. It also allows us to convert an object into an array of key-value pairs to manipulate or transform an object into a different data structure. For instance, apply the Object.entries() method to convert an object into a Map, which is a data structure with key-value pairs. To do this, use the following syntax: const map = new Map(Object.entries(site)); This will create a new Map with the same key-value pairs as the original object. The Object.getOwnPropertyNames() method in JavaScript The getOwnPropertyNames is a method that retrieves all of an object's own properties, including both enumerable and non-enumerable ones, but it excludes Symbol-keyed properties. Let’s try this method. First, we define an object.  const appConfig = { theme: 'dark', language: 'en' }; We can then add a non-enumerable internal property to the object.  // Add non-enumerable internal properties Object.defineProperty(appConfig, 'version', { value: '1.0.0', enumerable: false }); We can then use Object.getOwnPropertyNames(appConfig) to display the properties.  console.log(Object.getOwnPropertyNames(appConfig)); // Output: ["theme", "language", "version"] getOwnPropertyNames will display all internal properties, including hidden ones (version). We can then use the result to loop through the object and display the properties and their values. Object.getOwnPropertyNames(appConfig).forEach(key => { console.log(`${key}: ${appConfig[key]}`); }); // Output: // theme: dark // language: en // version: 1.0.0 The Reflect.ownKeys() method retrieves all own properties of an object, including string keys and symbol keys. By default, symbol keys are not visible for Object.keys() and Object.getOwnPropertyNames() methods. const plugin = { name: 'AuthPlugin', settings: { enable2FA: true, }, [Symbol('id')]: 'auth123', }; // Iterate over all keys Reflect.ownKeys(plugin).forEach(key => { console.log(`${String(key)}: ${plugin[key]}`); }); // Output: // name: AuthPlugin // settings: { enable2FA: true } // Symbol(id): auth123 Looping Through a Nested Object When a JavaScript object contains other objects as values, a simple loop won’t be enough to traverse the whole object. To resolve this issue, we can use recursion combined with the Object.keys().forEach() method.  Here is an example.  const nestedObject = { name: "Alice", details: { age: 25 } }; function traverse(obj) { Object.keys(obj).forEach(key => { if (typeof obj[key] === "object" && obj[key] !== null) { traverse(obj[key]); // Recursively handle nested objects } else { console.log(`${key}: ${obj[key]}`); } }); } traverse(nestedObject); // Output: // name: Alice // age: 25 Conclusion Loop through object keys and values in JS provides quick access to data stored in objects for manipulation and makes a code more dynamic and flexible. In this tutorial we showed you the basic methods for looping through object keys and values. Mastering these techniques is essential for a developer looking to create complex and efficient applications. By constantly learning and exploring new techniques and resources, you will become more adept at working with objects in your code. Keep practicing and experimenting with different approaches to find the one that works best for your specific project.
13 March 2024 · 11 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support