Sign In
Sign In

Data Types in Python

Data Types in Python
Hostman Team
Technical writer
Python
06.12.2023
Reading time: 7 min

Python is a fully object-oriented programming language. Hence, all data in it is objects, which can be embedded at the language level or declared manually. 

Objects are instances of a class and the basic building blocks of any program, which are allocated memory to store data in them. So, for example, when we write x = 5 in code, we create an instance of the int class with the value 5 and assign it to the variable x. Now x is an object of the int type.

All objects have unique data types (int, string, list, etc.) and are created using the constructors of their respective classes. Classes, in turn, are mechanisms that define the behavior of objects thanks to unique attributes and methods. 

In this article, we will look at what data types there are in Python and talk about the features of each of them.

Variables

Variables in Python are named memory locations that store a variety of values within a Python program.

Each variable has its own data type, which tells the interpreter what can be stored in the variable and how much memory should be allocated for it.

The declaration of a variable is as follows:

x = 10

First of all, we specify the name of the variable, then we put an equal sign, and after that, we pass the value that will be assigned to the specified variable.

Each variable has its own location in memory. You can determine it using the id() function:

x = 10
print(id(x))

For the variable x from the example above, the location will be like this:

168d493b 3b23 4359 9edc 902cb8ba881a

There is also a type() function in Python, that allows us to find out the data type selected for a particular variable:

x = 10
print(type(x))

As you can see from the image below, an integer data type has been defined for x.

Ec3965d6 B426 48ba B32a E06d6bad2d82

The process of declaring a data type is called typing. It can be static or dynamic. Python uses the latter. That's why when the same variable is used, it can represent objects of completely different data types. For example:

first_example = 'Hello'
print(type(first_example))

first_example = 100
print(type(first_example))

first_example = 3.14
print(type(first_example))

In all cases of calling print, we will see a different result. 

Built-in data types

In this section, we will look at all the basic data types in the Python programming language. They can be divided into two groups: immutable and mutable objects.

You cannot change (mutate) the data in the immutable objects. You can only create a new object with the specified value and the same name. Immutable objects are objects of the numeric, string or tuple type.

Mutable objects, in turn, can be changed. This group includes objects of the list, dictionary or set types.

To check if the object is mutable, let's use the id() function and compare the memory locations before and after changes were made:

first_example = 50
second_example = [50, 100, 150]
print(f'Memory location before changing int object = {first_example} : {id(first_example)}')
print(f'Memory location before changing list object = {second_example} : {id(second_example)}')
first_example += 50
second_example += [200]
print(f'Memory location after changing int object = {first_example} : {id(first_example)}'')
print(f'Memory location after changing list object = {second_example} : {id(second_example)}')

You can see that when performing the addition operation with a variable of int type, a new object is created, the name of which is saved, but the value of the memory location is not. When adding a new value to an object of the list type, the address in memory does not change, which confirms its mutability.

You should take into account the mutability when working with functions. When you call a function with a mutable object as an argument, the function may perform mutations on that object, which will affect the original object. It is generally better to avoid mutating arguments inside your functions.

Numeric and boolean

First of all, let's look at the numeric data type in Python. 

Below is a table containing the name and description of the numeric data type, along with its notation and examples. We also added the boolean data type here.

Data type

Description

Example

Whole numbers (int)

Positive and negative numbers without decimals.

example1 = 5

example2 = -1234

Floating point numbers (float)

Positive and negative numbers with decimals

example3 = 3.14

example4 = -43.4132

Complex numbers (complex)

Numbers in the format: a + bj

where a and b are real numbers and j is an imaginary unit.

Complex numbers are passed using the complex() function.

The syntax for displaying the real part:

variable_name.real

The syntax for displaying the imaginary part:

variable_name.imag

example5 = complex(5,4)

Boolean (bool)

The boolean data type takes only 2 values: True and False

It is often used to implement branching or checkboxes.

example7 = True

example8 = False

Strings

The string data type stores text information or a sequence of bytes. To declare a string, you need to use single, double or triple quotes, as shown in the example below:

example_srt1 = ‘Example string #1’
example_srt2 = “Example string #2”
example_srt3 = '''Example string #3'''

As we said before, strings are immutable objects.

Lists

List in Python is an ordered collection of items. These items can be of different data types. Lists are mutable, meaning you can add, remove, and modify elements in a list.

You can create a list by using square brackets with elements between them, separated by commas, as shown in the example below:

example_list = [1, 5.7, 'hello']

To retrieve elements from a list, use indices. You can retrieve a single element or a slice. Example:

example_list = [1, 5.7, 'hello']
print(f'Third element of the list: {example_list[2]}')
print(f'First and second element of the list: {example_list[0:2]}')

Tuples

Tuples in Python are similar to lists but immutable. Their advantage is that the interpreter works with them much faster. So, if you want your program to run faster and your data to remain immutable, use tuples.

To create a tuple, we need to put comma-separated elements inside parentheses, as shown in the example below:

example_tuple = (1, 5.7, 'hello')

As to retrieving elements, we can do it using indices, just like lists. Just remember that you cannot mutate them.

Dictionaries

Dictionaries are an unordered list of key-value pairs. They provide quick access to data by using the appropriate key.

To declare a dictionary, list the data in a key-value format in curly braces, as shown in the example below:

example_dict = {
    'name':'Peter',
    'age':33,
    'country':'Netherlands'
}

It's important to remember that values can be of any data type, and keys are only immutable.

To get a value, use the corresponding key:

example_dict = {
    'name':'Peter',
    'age':33,
    'country':'Netherlands'
}

print(f'Peter is from: {example_dict["country"]}')
print(f'His age is: {example_dict["age"]}')

Sets

A set is a collection of unique immutable elements.

To declare a set, you must list the elements separated by commas in curly braces, as shown in the example below:

example_set = {1,2,3,4,5}

If we try to pass duplicate elements into a set, the interpreter will automatically remove them. 

example_set = {1,2,3,4,5,1,2,3,4,5}
print(example_set)

As a result, the print(example_set) function will print the following:

F7c75f0d 64a6 4547 8034 23aa9f277a5d

Another feature of sets is that we can perform a number of mathematical operations (union, difference, intersection) on them.

What to remember

  • All objects have their own unique data types (int, string, list, etc.) and are created using the constructors of the corresponding classes.

  • Variables in Python are named memory locations that store values. Each variable has its own data type, which tells the interpreter what can be stored in that variable and how much memory should be allocated to it.

  • You cannot change the state and contents of immutable objects. Instead, you can create a new object with the specified value and the same name. Immutable objects are of the number, string or tuple types.

  • Mutable objects can be changed. This group includes the list, dictionary, and set types.

  • The numeric data type includes integers, floating point numbers, and complex numbers.

  • The boolean data type takes only two values: True or False.

  • The string data type stores text information or a sequence of bytes.

  • Lists are ordered collections of items that can be of different data types.

  • Tuples in Python are the same as lists, but immutable.

  • A dictionary is an unordered list of key-value pairs.

  • A set is a collection of unique and unordered elements of an immutable type.

Python
06.12.2023
Reading time: 7 min

Similar

Python

The Walrus Operator in Python

The first question newcomers often ask about the walrus operator in Python is: why such a strange name? The answer lies in its appearance. Look at the Python walrus operator: :=. Doesn't it resemble a walrus lounging on a beach, with the symbols representing its "eyes" and "tusks"? That's how it earned the name. How the Walrus Operator Works Introduced in Python 3.8, the walrus operator allows you to assign a value to a variable while returning that value in a single expression. Here's a simple example: print(apples = 7) This would result in an error because print expects an expression, not an assignment. But with the walrus operator: print(apples := 7) The output will be 7. This one-liner assigns the value 7 to apples and returns it simultaneously, making the code compact and clear. Practical Examples Let’s look at a few examples of how to use the walrus operator in Python. Consider a program where users input phrases. The program stops if the user presses Enter. In earlier versions of Python, you'd write it like this: expression = input('Enter something or just press Enter: ') while expression != '': print('Great!') expression = input('Enter something or just press Enter: ') print('Bored? Okay, goodbye.') This works, but we can simplify it using the walrus operator, reducing the code from five lines to three: while (expression := input('Enter something or just press Enter: ')) != '': print('Great!') print('Bored? Okay, goodbye.') Here, the walrus operator allows us to assign the user input to expression directly inside the while loop, eliminating redundancy. Key Features of the Walrus Operator: The walrus operator only assigns values within other expressions, such as loops or conditions. It helps reduce code length while maintaining clarity, making your scripts more efficient and easier to read. Now let's look at another example of the walrus operator within a conditional expression, demonstrating its versatility in Python's modern syntax. Using the Walrus Operator with Conditional Constructs Let’s write a phrase, assign it to a variable, and then find a word in this phrase using a condition: phrase = 'But all sorts of things and weather must be taken in together to make up a year and a sphere...' word = phrase.find('things') if word != -1: print(phrase[word:]) The expression [word:] allows us to get the following output: things and weather must be taken in together to make up a year and a sphere... Now let's shorten the code using the walrus operator. Instead of: word = phrase.find('things') if word != -1: print(phrase[word:]) we can write: if (word := phrase.find('things')) != -1: print(phrase[word:]) In this case, we saved a little in volume but also reduced the number of lines. Note that, despite the reduced time for writing the code, the walrus operator doesn’t always simplify reading it. However, in many cases, it’s just a matter of habit, so with practice, you'll learn to read code with "walruses" easily. Using the Walrus Operator with Numeric Expressions Lastly, let’s look at an example from another area where using the walrus operator helps optimize program performance: numerical operations. We will write a simple program to perform exponentiation: def pow(number, power): print('Calling pow') result = 1 while power: result *= number power -= 1 return result Now, let’s enter the following in the interpreter: >>> [pow(number, 2) for number in range(3) if pow(number, 2) % 2 == 0] We get the following output: Calling pow Calling pow Calling pow Calling pow Calling pow [0, 4, 16] Now, let's rewrite the input in the interpreter using the walrus operator: >>> [p for number in range(3) if (p := pow(number, 2)) % 2 == 0] Output: Calling pow Calling pow Calling pow [0, 4, 16] As we can see, the code hasn’t shrunk significantly, but the number of function calls has nearly been halved, meaning the program will run faster! Conclusion In conclusion, the walrus operator (:=) introduced in Python 3.8 streamlines code by allowing assignment and value retrieval in a single expression. This operator enhances readability and efficiency, particularly in loops and conditional statements. Through practical examples, we’ve seen how it reduces line counts and minimizes redundant function calls, leading to faster execution. With practice, developers can master the walrus operator, making their code cleaner and more concise. On our app platform you can deploy Python applications, such as Celery, Django, FastAPI and Flask. 
23 October 2024 · 4 min to read
Python

Python String Functions

As the name suggests, Python 3 string functions are designed to perform various operations on strings. There are several dozen string functions in the Python programming language. In this article, we will cover the most commonly used ones and several special functions that may be less popular but are still useful. They can be helpful not only for formatting but also for data validation. List of Basic String Functions for Text Formatting First, let’s discuss string formatting functions, and to make the learning process more enjoyable, we will use texts generated by a neural network in our examples. capitalize() — Converts the first character of the string to uppercase, while all other characters will be in lowercase: >>> phrase = 'the shortage of programmers increases the significance of DevOps. After the presentation, developers start offering their services one after another, competing with each other for DevOps.' >>> phrase.capitalize() 'The shortage of programmers increases the significance of devops. after the presentation, developers start offering their services one after another, competing with each other for devops.' casefold() — Returns all elements of the string in lowercase: >>> phrase = 'Cloud providers offer scalable computing resources and services over the internet, enabling businesses to innovate quickly. They support various applications, from storage to machine learning, while ensuring reliability and security.' >>> phrase.casefold() 'cloud providers offer scalable computing resources and services over the internet, enabling businesses to innovate quickly. they support various applications, from storage to machine learning, while ensuring reliability and security.' center() — This method allows you to center-align strings: >>> text = 'Python is great for writing AI' >>> newtext = text.center(40, '*') >>> print(newtext) *****Python is great for writing AI***** A small explanation: The center() function has two arguments: the first (length of the string for centering) is mandatory, while the second (filler) is optional. In the operation above, we used both. Our string consists of 30 characters, so the remaining 10 were filled with asterisks. If the second attribute were omitted, spaces would fill the gaps instead. upper() and lower() — convert all characters to uppercase and lowercase, respectively: >>> text = 'Projects using Internet of Things technology are becoming increasingly popular in Europe.' >>> text.lower() 'projects using internet of things technology are becoming increasingly popular in europe.' >>> text.upper() 'PROJECTS USING INTERNET OF THINGS TECHNOLOGY ARE BECOMING INCREASINGLY POPULAR IN EUROPE.' replace() — is used to replace a part of the string with another element: >>> text.replace('Europe', 'USA') 'Projects using Internet of Things technology are becoming increasingly popular in the USA.' The replace() function also has an optional count attribute that specifies the maximum number of replacements if the element to be replaced occurs multiple times in the text. It is specified in the third position: >>> text = 'hooray hooray hooray' >>> text.replace('hooray', 'hip', 2) 'hip hip hooray' strip() — removes identical characters from the edges of a string: >>> text = 'ole ole ole' >>> text.strip('ole') 'ole' If there are no symmetrical values, it will remove what is found on the left or right. If the specified characters are absent, the output will remain unchanged: >>> text.strip('ol') 'e ole ole' >>> text.strip('le') 'ole ole o' >>> text.strip('ura') 'ole ole ole' title() — creates titles, capitalizing each word: >>> texttitle = 'The 5G revolution: transforming connectivity. How next-gen networks are shaping our digital future' >>> texttitle.title() 'The 5G Revolution: Transforming Connectivity. How Next-Gen Networks Are Shaping Our Digital Future' expandtabs() — changes tabs in the text, which helps with formatting: >>> clublist = 'Milan\tReal\tBayern\tArsenal' >>> print(clublist) Milan Real Bayern Arsenal >>> clublist.expandtabs(1) 'Milan Real Bayern Arsenal' >>> clublist.expandtabs(5) 'Milan Real Bayern Arsenal' String Functions for Value Checking Sometimes, it is necessary to count a certain number of elements in a sequence or check if a specific value appears in the text. The following string functions solve these and other tasks. count() — counts substrings (individual elements) that occur in a string. Let's refer again to our neural network example: >>> text = "Cloud technologies significantly accelerate work with neural networks and AI. These technologies are especially important for employees of large corporations operating in any field — from piloting spacecraft to training programmers." >>> element = "o" >>> number = text.count(element) >>> print("The letter 'o' appears in the text", number, "time(s).") The letter 'o' appears in the text 19 time(s). As a substring, you can specify a sequence of characters (we'll use text from the example above): >>> element = "ob" >>> number = text.count(element) >>> print("The combination 'ob' appears in the text", number, "time(s).") The combination 'in' appears in the text 5 time(s). Additionally, the count() function has two optional numerical attributes that specify the search boundaries for the specified element: >>> element = "o" >>> number = text.count(element, 20, 80) >>> print("The letter 'o' appears in the specified text fragment", number, "time(s).") The letter 'o' appears in the specified text fragment 6 time(s). The letter 'o' appears in the specified text fragment 6 time(s). find() — searches for the specified value in the string and returns the smallest index. Again, we will use the example above: >>> print(text.find(element)) 7 This output means that the first found letter o is located at position 7 in the string (actually at position 8, because counting in Python starts from zero). Note that the interpreter ignored the capital letter O, which is located at position zero. Now let's combine the two functions we've learned in one code: >>> text = "Cloud technologies significantly accelerate work with neural networks and AI. These technologies are especially important for employees of large corporations operating in any field — from piloting spacecraft to training programmers." >>> element = "o" >>> number = text.count(element, 20, 80) >>> print("The letter 'o' appears in the specified text fragment", number, "time(s), and the first time in the whole text at", (text.find(element)), "position.") The letter 'o' appears in the specified text fragment 3 time(s), and the first time in the whole text at 7 position. index() — works similarly to find(), but will raise an error if the specified value is absent: Traceback (most recent call last): File "C:\Python\text.py", line 4, in <module> print(text.index(element)) ValueError: substring not found Here's what the interpreter would return when using the find() function in this case: -1 This negative position indicates that the value was not found. enumerate() — a very useful function that not only iterates through the elements of a list or tuple, returning their values, but also returns the ordinal number of each element: team_scores = [78, 74, 56, 53, 49, 47, 44] for number, score in enumerate(team_scores, 1): print(str(number) + '-th team scored ' + str(score) + ' points.') To output the values with their ordinal numbers, we introduced a few variables: number for ordinal numbers, score for the values of the list, and str indicates a string. And here’s the output: 1-th team scored 78 points. 2-th team scored 74 points. 3-th team scored 56 points. 4-th team scored 53 points. 5-th team scored 49 points. 6-th team scored 47 points. 7-th team scored 44 points. Note that the second attribute of the enumerate() function is the number 1, otherwise Python would start counting from zero. len() — counts the length of an object, i.e., the number of elements that make up a particular sequence: >>> len(team_scores) 7 This way, we counted the number of elements in the list from the example above. Now let's ask the neural network to write a string again and count the number of characters in it: >>> network = 'It is said that artificial intelligence excludes the human factor. But do not forget that the human factor is still present in the media and government structures.' >>> len(network) 162 Special String Functions in Python join() — allows you to convert lists into strings: >>> cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix', 'Philadelphia', 'San Antonio'] >>> cities_str = ', '.join(cities) >>> print('Cities in one line:', cities_str) Cities in one line: New York, Los Angeles, Chicago, Houston, Phoenix, Philadelphia, San Antonio print() — provides a printed representation of any object in Python: >>> cities = ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix', 'Philadelphia', 'San Antonio'] >>> print(cities) ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix', 'Philadelphia', 'San Antonio'] type() — returns the type of the object: >>> type(cities) <class 'list'> We found out that the object from the previous example is a list. This is useful for beginners, as they may initially confuse lists with tuples, which have different functionalities and are handled differently by the interpreter. map() — is a fairly efficient replacement for a for loop, allowing you to iterate over the elements of an iterable object, applying a built-in function to each of them. For example, let's convert a list of string values into integers using the int function: >>> numbers_list = ['4', '7', '11', '12', '17'] >>> list(map(int, numbers_list)) [4, 7, 11, 12, 17] As we can see, we used the list() function, "wrapping" the map() function in it—this was necessary to avoid the following output: >>> numbers_list = ['4', '7', '11', '12', '17'] >>> map(int, numbers_list) <map object at 0x0000000002E272B0> This is not an error; it simply produces the ID of the object, and the program will continue to run. However, the list() method is useful in such cases to get the desired list output. Of course, we haven't covered all string functions in Python. Still, this set will already help you perform a large number of operations with strings and carry out various transformations (programmatic and mathematical). On our app platform you can deploy Python applications, such as Celery, Django, FastAPI and Flask. 
23 October 2024 · 9 min to read
Python

Deploying Python Applications with Gunicorn

In this article, we’ll show how to set up an Ubuntu 20.04 server and install and configure the components required for deploying Python applications. We’ll configure the WSGI server Gunicorn to interact with our application. Gunicorn will serve as an interface that converts client requests via the HTTP protocol into Python function calls executed by the application. Then, we will configure Nginx as a reverse proxy server for Gunicorn, which will forward requests to the Gunicorn server. Additionally, we will cover securing HTTP connections with an SSL certificate or using other features like load balancing, caching, etc. These details can be helpful when working with cloud services like those provided by Hostman. Creating a Python Virtual Environment To begin, we need to update all packages: sudo apt update Ubuntu provides the latest version of the Python interpreter by default. Let’s check the installed version using the following command: python3 --version Example output: Python 3.10.12 We’ll set up a virtual environment to ensure that our project has its own dependencies, separate from other projects. First, install the virtualenv package, which allows you to create virtual environments: sudo apt-get install python3-venv python3-dev Next, create a folder for your project and navigate into it: mkdir myappcd myapp Now, create a virtual environment: python3 -m venv venv And create a folder for your project: mkdir app Your project directory should now contain two items: app and venv. You can verify this using the standard Linux command to list directory contents: ls Expected output: myapp venv You need to activate the virtual environment so that all subsequent components are installed locally for the project: source venv/bin/activate Installing and Configuring Gunicorn Gunicorn (Green Unicorn) is a Python WSGI HTTP server for UNIX. It is compatible with various web frameworks, fast, easy to implement, and uses minimal server resources. To install Gunicorn, run the following command: pip install gunicorn WSGI and Python WSGI (Web Server Gateway Interface) is the standard interface between a Python application running on the server side and the web server itself, such as Nginx. A WSGI server interacts with the application, allowing you to run code when handling requests. Typically, the application is provided as an object named application in a Python module, which is made available to the server. In the standard wsgi.py file, there is usually a callable application. For example, let’s create such a file using the nano text editor: nano wsgi.py Add the following simple code to the file: from aiohttp import web async def index(request): return web.Response(text="Welcome home!") app = web.Application() app.router.add_get('/', index) In the code above, we import aiohttp, a library that provides an asynchronous HTTP client built on top of asyncio. HTTP requests are a classic example of where asynchronous handling is ideal, as they involve waiting for server responses, during which other code can execute efficiently. This library allows sequential requests to be made without waiting for the first response before sending a new one. It’s common to run aiohttp servers behind Nginx. Running the Gunicorn Server You can launch the server using the following command template: gunicorn [OPTIONS] [WSGI_APP] Here, [WSGI_APP] consists of $(MODULE_NAME):$(VARIABLE_NAME) and [OPTIONS] is a set of parameters for configuring Gunicorn. A simple command would look like this: gunicorn wsgi:app To restart Gunicorn, you can use: sudo systemctl restart gunicorn Systemd Integration systemd is a system and service manager that allows for strict control over processes, resources, and permissions. We’ll create a socket that systemd will listen to, automatically starting Gunicorn in response to traffic. Configuring the Gunicorn Service and Socket First, create the service configuration file: sudo nano /etc/systemd/system/gunicorn.service Add the following content to the file: [Unit] Description=gunicorn daemon Requires=gunicorn.socket After=network.target [Service] Type=notify User=someuser Group=someuser RuntimeDirectory=gunicorn WorkingDirectory=/home/someuser/myapp ExecStart=/path/to/venv/bin/gunicorn wsgi:app ExecReload=/bin/kill -s HUP $MAINPID KillMode=mixed TimeoutStopSec=5 PrivateTmp=true [Install] WantedBy=multi-user.target Make sure to replace /path/to/venv/bin/gunicorn with the actual path to the Gunicorn executable within your virtual environment. It will likely look something like this: /home/someuser/myapp/venv/bin/gunicorn. Next, create the socket configuration file: sudo nano /etc/systemd/system/gunicorn.socket Add the following content: [Unit] Description=gunicorn socket [Socket] ListenStream=/run/gunicorn.sock SocketUser=www-data [Install] WantedBy=sockets.target Enable and start the socket with: systemctl enable --now gunicorn.socket Configuring Gunicorn Let's review some useful parameters for Gunicorn in Python 3. You can find all possible parameters in the official documentation. Sockets -b BIND, --bind=BIND — Specifies the server socket. You can use formats like: $(HOST), $(HOST):$(PORT). Example: gunicorn --bind=127.0.0.1:8080 wsgi:app This command will run your application locally on port 8080. Worker Processes -w WORKERS, --workers=WORKERS — Sets the number of worker processes. Typically, this number should be between 2 to 4 per server core. Example: gunicorn --workers=2 wsgi:app Process Type -k WORKERCLASS, --worker-class=WORKERCLASS — Specifies the type of worker process to run. By default, Gunicorn uses the sync worker type, which is a simple synchronous worker that handles one request at a time. Other worker types may require additional dependencies. Asynchronous worker processes are available using Greenlets (via Eventlet or Gevent). Greenlets are a cooperative multitasking implementation for Python. The corresponding parameters are eventlet and gevent. We will use an asynchronous worker type compatible with aiohttp: gunicorn wsgi:app --bind localhost:8080 --worker-class aiohttp.GunicornWebWorker Access Logging You can enable access logging using the --access-logfile flag. Example: gunicorn wsgi:app --access-logfile access.log Error Logging To specify an error log file, use the following command: gunicorn wsgi:app --error-logfile error.log You can also set the verbosity level of the error log output using the --log-level flag. Available log levels in Gunicorn are: debug info warning error critical By default, the info level is set, which omits debug-level information. Installing and Configuring Nginx First, install Nginx with the command: sudo apt install nginx Let’s check if the Nginx service can connect to the socket created earlier: sudo -u www-data curl --unix-socket /run/gunicorn.sock http If successful, Gunicorn will automatically start, and you'll see the HTML code from the server in the terminal. Nginx configuration involves adding config files for virtual hosts. Each proxy configuration should be stored in the /etc/nginx/sites-available directory. To enable each proxy server, create a symbolic link to it in /etc/nginx/sites-enabled. When Nginx starts, it automatically loads all proxy servers in this directory. Create a new configuration file: sudo nano /etc/nginx/sites-available/myconfig.conf Then create a symbolic link with the command: sudo ln -s /etc/nginx/sites-available/myconfig.conf /etc/nginx/sites-enabled Nginx must be restarted after any changes to the configuration file to apply the new settings. First, check the syntax of the configuration file: nginx -t Then reload Nginx: nginx -s reload Conclusion Gunicorn is a robust and versatile WSGI server for deploying Python applications, offering flexibility with various worker types and integration options like Nginx for load balancing and reverse proxying. Its ease of installation and configuration, combined with detailed logging and scaling options, make it an excellent choice for production environments. By utilizing Gunicorn with frameworks like aiohttp and integrating it with Nginx, you can efficiently serve Python applications with improved performance and resource management.
23 October 2024 · 7 min to read

Do you have questions,
comments, or concerns?

Our professionals are available to assist you at any moment,
whether you need help or are just unsure of where to start.
Email us
Hostman's Support